
www.manaraa.com

A Middleware Approach for Building Secure Network Drives over Untrusted
Internet Data Storage

Ravi Chandra Jammalamadaka†, Roberto Gamboni∗, Sharad Mehrotra†, Kent E. Seamons‡,
Nalini Venkatasubramanian†

University of California, Irvine†, Brigham Young University‡, University of Bologna, Italy∗

{rjammala, sharad, nalini}@ics.uci.edu seamons@cs.byu.edu roberto.gamboni@studio.unibo.it

Abstract

In this paper, we present the design of DataGuard
middleware that allows users to outsource their file sys-
tems to heterogeneous data storage providers available on
the Internet. Examples of data storage providers include
gmail.com, rapidshare.de and Amazon S3 service. In
the DataGuard architecture, data storage providers are
untrusted. Therefore, DataGuard preserves data confiden-
tiality and integrity of outsourced information by using
cryptographic techniques. DataGuard effectively buildsa
secure network driveon top of any data storage provider
on the Internet. We propose techniques that realize asecure
file systemover the heterogeneous data models offered by
the diverse storage providers. To evaluate the practicality
of DataGuard, we implemented a version of the middleware
layer to test its performance, much to our satisfaction.

1 Introduction

Recently, there has been an explosion in the number
of Internet data storage providers (IDP) that are emerg-
ing. Examples of such services include: Rapidshare.de,
Youtube.com, Megaupload.com, Yahoo Briefcase!, Ama-
zon S3 service, etc. The clients outsource their data to
IDPs, who provides data management tasks such as storage,
access, backup, recovery, etc. IDPs offer numerous benefits
to users, which include: a)Device Independence:Clients
can access their information from any machine connected
to the Internet; and b)Data Sharing:The IDPs provide data
sharing capabilities that allow users to share their data with
any user on the Internet.

Currently, users employ a variety of ways to achieve
mobility when it comes to personal data. The range of
solutions include but are not limited to: i) Carrying their
data in secondary storage devices such as USB drives,
CD/DVDs, etc. This is a largely inconvenient solution

pushing the burden of data management to the user. Also,
the solution in inherently insecure, as most users store their
data in plaintext. Such devices can be easily lost or stolen;
ii) Maintaining public servers such as web servers, FTP
servers, etc. The drawbacks of this solution are twofold:
a) Administering such a service is burdensome and requires
sound technical knowledge; and b) Many users are not in
a position to run such a service due to ISP restrictions.
Likewise, to share data, users employ solutions like sending
email, etc., which suffer from similar drawbacks listed
above.

By comparison, services offered by the IDPs do not
suffer from the above drawbacks and have the following
advantages: a)Availability: Data is available 24/7 from
any computer connected to the Internet; b)Low cost:
Typically, the services are free. The business model is
based on advertisements, emphasizing the fact that storage
has become very cheap; c)Good Service: The storage
providers typically employ experts, thereby providing very
high quality service. All of the above advantages make IDPs
an attractive prospect for data storage.

The primary limitation of such services is the require-
ment totrust the storage provider. The client’s datais stored
in plaintext and therefore is susceptible to the following
attacks:

• Outsider attacks: There is always a possibility of
Internet thieves/hackers breaking into the storage
provider’s system and stealing or corrupting the
user’s data.

• Insider attacks: Malicious employees of the storage
provider can steal the data themselves and profit from
it. There is no guarantee that the confidentiality and
integrity of the user’s data are preserved at the server
side. Recent reports indicate that the majority of
attacks are insider attacks [9, 8].

Despite these security concerns, IDPs are gaining pop-
ularity due to the convenience and usefulness of the data
services they offer. In this paper we present the design



www.manaraa.com

and implementation of DataGuard, a middleware based
architecture that allows the users to outsource their data to
untrusted IDPs. Our goal is to develop a middleware that
a client can run on their local machines, which can interact
with the IDPs of their choice and yet manage the client’s
data securely. We address the problem at the file level,
i.e., the users outsource their local file system to the IDPs.
DataGuard effectively builds a network drive on top of data
storage provided by the IDP.

There are three primary reasons that motivates our work
on designing such a middleware: a)Popularity: Network
drives are very popular because they allow users remote
access to their data. They effectively provide a virtual
disk that users can carry around seamlessly without much
effort. This is precisely the reason why there are many
commercial IDPs offering anetwork drive likeservice
on the Internet [22, 23]; b)Security: Data should be
secured before being outsourced to an untrusted server. b)
General applicability: A wide variety of applications can
be supported by afile storagelike service. For instance,
consider the following sample applications that can be
supported: a) anautofill application, which remembers
and fills out passwords from any machine connected to the
Internet. b) abookmark managerwhich provides remote
access to personal bookmarks.

DataGuard allows users to specify which IDP they want
to store their data. To provide such functionality, DataGuard
needs to take into account the heterogeneity of the data
models that are offered by the IDPs. For instance, in
Amazon S3 service, files are the basic units of data, while
in Gmail.com, emails are the basic data units. One of
the fundamental tenets of DataGuard is make sure thatno
changes are required at the server to support DataGuard.
The servers are oblivious to the existence of DataGuard.
To combat such heterogeneity, DataGuard provides a novel
general model of a file/data, that can then be further cus-
tomized to individual IDPs. We will call this model as the
generic data model(GDM). We will propose techniques
to map the generic database model to server side data
representation. Since the IDPs are untrusted in our model,
we propose asecurity modelthat will allows DataGuard to
ensure data confidentiality and integrity of user’s data by
using cryptographic techniques.

DataGuard supports all the operations supported by
modern file systems such as creating a directory, reading
a file, etc. DataGuard also allows users to search for
documents that contain a particular keyword. Such a task
in context of DataGuard is very challenging, since the
data is encrypted at the server. The obvious solution of
fetching all the encrypted data from the server, decrypting
it and executing the query locally is impractical as it puts
tremendous performance strain on the system. We develop
a novel index based approach of executing such keyword

Client 
Application

G
D
M

Files

File operation

TL1 IDP1
fetch object

Store object
Server side 
requests

Server side 
responsesobjects

Files

DataGuard Middleware

TLn IDPn
fetch object

Store object
Server side 
requests

Server side 
responsesobjects

Figure 1. DataGuard Architecture

based queries at the server. The proposed index is carefully
designed not to disclose any information to adversaries.
Previous work [7, 4] on executing queries over encrypted
data cannot be utilized in the context of DataGuard, since
the previous work assumes that the server is cooperative
and runs a compliant protocol for enabling search. We
cannot make such an assumption, since in the DataGuard
architecture, no changes are possible at the server.

Our contributions in this paper are the following: a) A
novel middleware based architecture called DataGuard, that
allows users to outsource their information to any Internet
data storage providers of their choice; b) A novel data
model called the generic database model that can be easily
translated to the specific data models at the server; c) A
security model that allows DataGuard to enforce security
constraints of the user at the data level; d) A novel index
based approach of executing such keyword based queries
at the server; and d) A prototype implementation of the
DataGuard middleware.

RoadMap: In section 1.1, we provide a brief overview
of the DataGuard architecture. Section 2 presents the
generic data model. In section 3.1 and 3.2, we present
our security model over GDM. In section 4, we present the
different client-server interactions in our model. In section
5, we describe the specifics of the translational layers. In
section 8, we present our novel cryptographic index that
handles keyword searches on encrypted data. In section
7, we present the performance results of the DataGuard
prototype.

1.1 Architectural Overview

The desirable properties/goals of DataGuard are the
following:

• Allow users to outsource their file system to any
Internet based data storage provider of their choice.

• Preserve security properties of user data such as data
integrity and confidentiality.

• DataGuard should be easy to use.

Major Entities and Threat Model: There are three
main components in our architecture: a) Client machine;

2



www.manaraa.com

b) DataGuard middleware; and c) Data storage providers.
The Client machine is the end device from which the user
is accessing the data. The client machine is entirely trusted.
The DataGuard middleware and it’s associated components,
i.e. translational layersare also trusted and run inside the
client machine. We will explain the role of the translational
layers soon. The middleware is in charge of providing
data services to the user by fetching the required data
from the storage providers. The storage providers provide
data management services to the clients and are untrusted.
We will assume ahonest-but-curiousbehavioral model for
the storage providers. That is, the storage providers are
expected to provide the required services, but the employees
that work for such providers could steal data and profit from
it.

Overview: Figure 1 illustrates the overall architecture
of DataGuard. DataGuard is both a client application and a
middleware that runs at the user’s client machine. When the
application is first started, the middleware will ask for the
name/URL of the storage provider, username and password
for authenticating to the storage provider. In addition,
DataGuard requires users to provide a masterpassword, a
secret used to enforce data confidentiality and integrity.
Masterpassword is the only secret that the user needs to
remember for using DataGuard and it is used to generate
all the cryptographic keys. After the user specifies the
data in a login screen, the middleware fetches the file
system content from the server and provides afile system
like view to the user. All the standard operations of a
regular file system are available to the user. Once the
user closes a session, any temporary files that are opened
by the middleware application are closed. The user can
repeat the process for multiple different storage providers
and DataGuard provides a common interface for accessing
all the respective file systems.

The atomic unit for data retrieval in DataGuard isfiles.
The client application requests files from the middleware.
But DataGuard middleware does not work with a file based
data model. Instead, it works on an object based data model
called the generic data model (GDM). DataGuard middle-
ware first maps files to objects in GDM and also translates
file system operations to their equivalent operations on the
object. We will discuss them in more detail in section 4.
The object level abstraction is necessary since IDPs vary
significantly when it comes to data storage models. For
instance, Yahoo mail and Gmail work with email based
data abstractions, and Rapidshare.de and MegaUpload.com
work with a file based data abstractions. The objects are
then further translated into individual data models of the
storage providers bytranslational layers. Translation layers
contain functions that store and fetch objects from the
IDP. Since the implementation of these functions vary from
IDP to IDP, translation layers need to be written for each

individual IDP. We envision that these translation layers
will be written by experts or the webmasters of the IDPs
themselves, if DataGuard becomes popular. Currently, we
have written three such layers which we will introduce soon.
The translational layers can be written fairly easily for most
IDPs on the Internet.

Objects provide a higher level/general enough abstrac-
tion, that allow data items smaller than a file to be stored
and fetched from the server. Although, in DataGuard’s
current avatar we do not fetch anything smaller than a file.
We adapted the object oriented approach to accommodate
our future directions with regard to DataGuard. Alterna-
tively, instead of operating at an object based data model,
DataGuard could have followed an XML based data model.
The drawback of such an approach is: XML requires fairly
thick parsers that make the DataGuard middleware fairly
bulky. We therefore, decided to design a fairly simple but
flexible enough object based data model called the generic
data model that we will describe in the next section.

Our goal is to develop DataGuard and release an API
that will allow experts or webmasters to release translation
layers based on this API that will allow users to use a variety
of IDPs as storage servers.

2 Generic Data Model

Thegeneric data model(GDM) is an object-based model
for representing files and directories in DataGuard. The
GDM middleware creates object instances and invokes
operations on them according to an API that supports the
storage and retrieval of DataGuard objects. The GDM
is simple and generic enough that to support a variety of
storage providers.

Each GDM objectO has a uniqueid (O.id) and a set
of attributesO.A whereA = {id, content,metadata}.
O.content represents the object’s content andO.metadata
represents the ancillary information about the object. The
metadata is a set ofattribute=value pairs. DataGuard
stores and deletes data at the object level at the storage
provider. Updates to objects are modeled as a delete
operation followed by an insert/store operation.

2.1 Mapping a file system to the GDM

Conceptually, a file systemFS can be represented as
a graph having the structure illustrated in fig 2. Every
directory and file is a node in the graph. An edge between
two nodes represents theparent-childrelationship. The “*”
operator implies zero or more nodes, as adirectory node
can have zero or more files or sub-directories.

In DataGuard, every file and directory node is treated
as an object. Each object has its ownunique id. We will
explain the generation of such ids shortly. For a file, the

3



www.manaraa.com

Directory

*

File

*

Metadata Content

metadata

Figure 2. Graph representation of a file
system

object’s content (O.content) is the content of the file. The
object’s metadata (O.metadata) includes information such
as the file name, last modified date, file size, etc. The
object’s name (O.name), is the name of the file.

For a directory, the object’s content (O.content) is set
to null1. The object’s name (O.name) is the name of the
directory. The metadata of the directory object will include
directory name, size of the directory, directory contents, etc.

Additionally, the directory object maintains a
child referencesattribute in the metadata. Childreferences
contains a list of pointers to the immediate children of the
directory node/object. The pointers contain the id of the
object being referenced to allow DataGuard to fetch the
child nodes of a directory when required.

Id Generation: The object ids are randomly generated.
For every objectOi, a ramdom numberri is generated
and hashed deterministicallyhMP (ri) using the master-
password (MP) as the key to determine the object’s idOi.id.
The reason for hashing the id will be apparent in the next
section.

3 Enforcing Security Constraints

3.1 Data Confidentiality

In DataGuard, the user’s outsourced data is kept con-
fidential. A DataGuard object0 contains the following
attributes{ id, name, content, metadata}. This section
describes how the confidentiality of DataGuard data is
achieved.

id attribute: The id of the object does not reveal any
information about the object at the server side and hence it
is left untouched. The object’s id is used to fetch it from the
server.

Content, name and metadata attributes:An object’s
metadata, name and content are encrypted using theobject’s
encryption key(OEK). The key is generated on the fly using
the key derivation function (KDF) of the password-based

1The directories in many modern file systems do not actually carry any
user data.

encryption specification PKCS #5 [5]. The KDF function
calculates keys from passwords in the following manner:

Key = KDF (Password, Salt, Iteration)

The Salt is a random string to prevent an attacker
from simply precalculating keys for the most common
passwords. The KDF function internally utilizes a hash
function that computes the final key. To deter an attacker
from launching a dictionary attack, the hash function is
applied repeatedly on the outputIteration times. This
ensures that for every attempt in a dictionary attack, the
adversary has to spend a significant amount of time. In
DataGuard, to generate the OEK for an objectO, we use
the masterpassword as the password, the id of the object
as the salt, and we set the iteration count to 1000, the
recommended number.

Another approach is to generate a random key for each
object and encrypt the object with that key. The random
key could then be encrypted with the key derived from
the masterpassword. We chose to generate the key since
it is inexpensive using a hash function rather than retrieve
a key along with each object from the server. This saves
network overhead, especially for small objects when the
cost of retrieving the key would dominate.

3.2 Data Integrity

Another requirement of DataGuard is that data integrity
be preserved. This section describes how DataGuard en-
sures that data is bothSoundandComplete.

Soundness: To ensure soundness of an object, Data-
Guard needs a mechanism to detect when tampering occurs.
To achieve this, the HMAC2 of an object is calculated and
stored on the server. When the object is retrieved from the
server, its HMAC is also returned. The client calculates an
HMAC again and compares it to the original HMAC. If they
are equivalent, then no tampering has occurred. One way to
compute the HMAC is as follows:

HMAC(O.id||O.name||O.Content||O.metadata)

Although the HMAC can be used to determine sound-
ness, it does not guarantee thefreshnessof the object. That
is, the server could return an older version of the object and
the client will fail to detect it. One way to address this is
to include the current version of the object when generating
the HMAC. Thus, the HMAC can be generated as follows:

HMAC(O.id||O.name||O.Content||O.metadata||V ersion)

Every time the object is updated, the version number is
increased and the HMAC calculated again. This is done at

2A keyed-hash message authentication code.

4



www.manaraa.com

the client side and hence there is no loss of security. Another
possibility is to use the last modified date of the object as the
version number. Such a date could be stored in the object’s
metadata. When access to the object is desired, the object
can be retrieved from the server and the HMAC calculated
again locally. The client now has to confirm the version
number or the last modified date manually to determine if
any tampering as taken place. For instance, if the client does
not agree with the last modified date/version that computes
the HMAC the server returned, then the client can detect
that a possible tampering has taken place at the server. But
such an approach requires the user to validate every object
and hence makes the system unusable.

Another method is to calculate theglobal signatureof
the complete file system using a Merkle tree approach
[?] and store the signature locally. Whenever access to
an object is made, the server sends a partial signature
over the remaining objects so that the client can use the
partial signature and the object being accessed to generate a
signature to compare to the most recent global signature that
is stored locally. If the signatures match, then no tampering
has occurred. We did not adopt this solution because it
requires server-side support, and violates our goal to use
existing data storage providers. Also, it requires a mobile
user to transfer the global signature between machines,
thereby pushing data management tasks back to the user,
something that we want to avoid. An open problem is
to design data integrity techniques that allow the client
application to detect data tampering attempts at the server,
without any user involvement.

DataGuard leverages the ability to store data with mul-
tiple storage providers. For instance, if a user configures
DataGuard with at least two different storage providers SP1
and SP2, then DataGuard can store the version numbers of
the objects belonging to SP1 with SP2 and vice versa. If we
assume that SP1 and SP2 do not collude then the last update
problem can be solved. This assumption of non-colluding
servers has been made previously by the authors of [3] and
it is applicable to DataGuard since the storage providers
are in two different administrative domains to reduce the
probability of an attack.

Completeness: In DataGuard, the completeness prop-
erty needs to be verified when fetching all the child nodes
of a directory. The information about the of number of
children of a directory node is stored in the metadata of the
object (in the childreferences attribute). This information
lets the client know precisely how many child objects
should be available from the server.

3.3 Hiding File Structure

The file system-GDM mapping discussed previously
translates a hierarchal representation of a file system to a

flat structure (i.e., object representation). The objects are
encrypted before being stored at the server. The benefit of
such an approach is that it hides the structure of the file
system at the server. In [24], the authors have identified
the benefits of hiding the file structure from the untrusted
server.

Notice that mere encryption of the objects does not
completely hide the structure of the file system. When the
metadata of the object is encrypted, the number of pointers
in the child references dictate the amount of the ciphertext
of the object. The size of the ciphertext leaks the structure
of the file structure, although not completely. The adversary
can now determine the number of the children of a directory
node from the ciphertext size, but he/she does not know
where the actual child nodes are stored.

To prevent even the partial structure leakage, all the
directory objects need to be made of equal size. This is
done as follows: DataGuard preordains a number called
MAX CHILDREN. For directory nodes that have child
nodes less than MAXCHILDREN, DataGuard pads the
child referencesattribute with placeholder pointers to make
size equal to the size of MAXCHILDREN references. If a
directory node contains more than MAXCHILDREN child
nodes, DataGuard splits them into a set of directory objects
each containing MAXCHILDREN nodes. We will explain
the details of the process with an example: Let an object
O containn children, whereMAX CHIDREN < n <
2∗MAX CHILDREN . Now DataGuard splits the object
O into two objectO1 andO2. The id ofO1 will be same as
that ofO. The id of objectO2 is calculated as follows:

O2.id = hMP (O1.id||Index)

|| represents the string concatenation symbol.Index
is an integer whose value is incremented for each addi-
tional object that is created. In the above example,Index
value is set to 1. The hashing is done to ensure that
DataGuard with the knowledge ofO1.id can calculate
O2.id. MAX CHILDREN references/pointers of nodes
from the n children ofO are stored in01 and remaining
n − MAX CHILDREN references are stored inO2’s
ChildReferences attribute. TheO2 Child References is
padded with placeholder pointers to reflect the size of
MAX CHILDREN pointers. The objectO1 inherits the
metadata from the objectO and metadata of the object
O2 is set to null3. The O1 object’s metadata maintains
an additional objectsattribute which tells DataGuard the
number of additional objects its needs to fetch to complete
the directory object. We will refer to01, the first object that
is fetched as thestarter objectand the rest of the objects as
theadditional objects.

3In reality, the metadata of this object is also padded up with
placeholder bits to ensure equal size between the objects.

5



www.manaraa.com

Now when the server has to fetch objectO from the
server. It first fetches the starter objectO1. Then it utilizes
the value of the additionalobjects attribute to obtain the ids
of the all the subsequent objects by hashing the id ofO1

together with the index counter that is incremented for each
additional object. DataGuard now has enough information
to recreate the objectO at the client side. Notice that that
the hash function is used to calculate the id of the additional
objects from the id of the starter object. To have a uniform
representation for object ids, the random number generated
for the starter object is also hashed.

Our storage model prevents an adversary from deter-
mining the file structure from the ciphertext. However, a
sophisticated adversary can still infer the structure from the
access patterns. A solution to this problem will require
a solution similar in spirit to oblivious computing [?, ?].
Such a solution will be computationally very expensive
and impractical in the DataGuard scenario. We designed
a solution that strikes a balance between security and
performance.

4 GDM Operations

This section describes the interface/functionality pro-
vided by the middleware. The interface is a set of functions
that translate file system operations to operations on the
server/storage providers side.

Login (storageproviderURL, username, password,
masterPassword): The middleware procures the URL of
the storage provider, username and password of the user
to be able to access the service provided by the storage
provider. Once the user provides the right credentials,
DataGuard fetches the root object from the server and
displays the object as a directory to the user. In DataGuard
the id of the root object is equal tohMP (1.0), where MP
represents the masterpassword of the user. The user can
now perform any of the following standard file system
operations.

Create File (fileName): A new object is created to
represent the file. The object id is randomly generated (see
section 3.1). Then, object’s metadata and the content are
encrypted and the data signature is calculated as described
earlier in section 3.1 and 3.2. The object is then stored at the
server using thestore(Object 0)function implemented in the
translation layer of the IDP. The directory object’s metadata
under which the file is being created is also fetched. The
children refereneces attribute is then manipulated to store
the pointer to the newly created file. The parent object is
then stored at the server.

Open Directory (directoryName): The middleware
identifies the children of the directory node using the
child references attribute. The objects are then fetched from
the server and presented in the form of directories and files

to the user. Here, the object’s metadata only is fetched.
Read File (fileName): To read/open a file, the user

first navigates to the file and clicks it. The middleware
then procures the object id and fetches its content from the
server.

Write File (fileName): When updating a file, the data
signature is calculated as described earlier and the object’s
content is encrypted using the OEK that is generated using
the id of the node/file. The old object residing at the server
is deleted and the new version of the object calculated in the
previous step is then stored at the server.

Move File (fileName, destinationPath):Let us assume
a file f is moved from directoryd1 to d2. In DataGuard
the move operation is enforced by removing the pointer
to f from d1 and adding the pointer to f ind2. Even for
this operation, it is only required to fetch the metadata
of the objectsd1 and d2. The ids of the objects are not
changed during the move and hence they do not effect the
cryptographic keys that secure the object.

Move Directory (directoryName, destinationPath):
This operation is similar to the MoveFile operation
discussed above.

DeleteFile/Directory (file/directory Name) : When
deleting a file, its corresponding object is deleted from
the server. When this is done, the parent object is also
fetched from the server and pointer deleted from the
child references attribute.

We have ignored the description of other operations such
creating a directory, renaming a directory, etc, due to the
lack of space. The previous descriptions of some of the
operations provide intuition for the other operations. For
more details regarding the client server interactions, please
see the full version of the paper [6].

5 Translational Layers

A TL layer contains the implementation of five functions
illustrated in fig 3. The functionstore( Object O )stores
an object O at the server and the functionfetch( Object O
) retrieves the object from the server. In reality, the fetch
function is overloaded with another function(fetch( Object
0, Metadata)which fetches only the metadata of the object.
The functiondelete(Object O)deletes an object stored at the
server. Functionsconnectanddisconnectopen and close a
session with the IDP.

public int connect(String username, String password)
public int disconnect()
public int store(Object o)
public int fetch(Object o)
public int delete(Object o)

Figure 3. Translational layer functions

The translation layer contains the server specific imple-
mentation that is required by the DataGuard middleware.

6



www.manaraa.com

We will now proceed to define two layers supporting email
and Amazon S3 storage service systems.

Email translation layer: An email translation layer is
useful because: a) Most users have access to web based
email services that are free; and b) These services currently
provide user’s a significant amount of storage space.

Store( Object O: )An object O is mapped to two
email messagesE1 andE2, whereE1 stores the object’s
metadataO.metadata andE2 stores the object’s content
O.Content. The metadata and the content are stored as
email attachments. The object’s id is stored in the subject
header of both the email messages. The email is created
at the server by generating the appropriate HTTP POST
message that creates an email at the server.

Fetch ( Object O:) DataGuard fetches the required
object by querying the email service provider’s search
interface to find the appropriate emails. This is done by
generating the HTTP POST messages that forwards the
search query to the server. DataGuard needs to use the
search interface to identify the required emails, as it does
not have control over how the emails are stored at the server.
Typically, emails are given a server side id. This id is used
to fetch emails from the server. DataGuard has no control
over the generation of such an id. It needs to use the search
interface to procure the id and then use it to fetch the email.
Such downloaded emails are then mapped to an object form.

We have described the details of the two of the most
important TL functions. In the interest of space, we will
not describe the other functions in this paper. We hope the
above discussion provides the user with enough intuition for
other functions.

Amazon S3 translation layer: Amazon S3 service also
follows an object based model for data representation. In
Amazon S3 service, data is modeled as a set of buckets.
Each bucket contains a set of objects. A bucket cannot
contain further buckets inside them. The TL layer for
Amazon S3 service maps DataGuard objects to Amazon
objects and vice versa.

Store (Object O:) An Amazon object consists of the
following primary attributes{ Key, DataString}4. The
DataGuard object’s metadata and content are stored in
the Amazon object’s DataString attribute. The id of the
DataGuard object is stored in the Key attribute. An HTTP
POST message is generated that creates the required object
at the server.

Fetch (Object O:)The TL layer will fetch the Amazon
object withKeyequal to O.id. This is achieved by creating
the appropriate HTTP POST message as well.

4We have ignored other attributes in the interest in brevity

6 Keyword Search

File systems allow users to search for documents that
contain a particular keyword. This section describes how
DataGuard handles such queries.

Problem definition: A file f can be represented as a set
of words{W1,W2, . . . Wn}. A keyword search query Q is
also a set of words{W q

1 ,W q
2 . . . W q

m}. Given a query Q
and a set of FilesSF = {F1, F2 . . . Fk}, our objective is to
find all files fromSF , where∀i, W q

i ∈ Fj , 1 ≤ i ≤ m and
1 ≤ j ≤ k.

The problem is relatively easy if the files inSF are not
encrypted, which is not the case in DataGuard. There has
been previous work on executing keyword search queries
on encrypted data [7, 4]. Solutions previously proposed
assumed that the server is cooperative and runs a complaint
protocol to enable search on encrypted data. For instance,
in [7], the client computes a trapdoor for a keyword and
sends the trapdoor to the server. The trapdoor does not
reveal any information about the original keyword. The
server now by utilizing the trapdoor will perform a linear
scan of all the documents to test for ciphertext blocks that
contains the required word. Similarly, in [4], the server
computes multiple hashes of the trapdoor to compute an
index that it can then subsequently use to find the required
documents. Clearly, such approaches cannot be applied in
DataGuard context, since the server cannot be dictated to
perform computations that it is does not perform already.
In the DataGuard architecture, we made an assumption that
servers can only store and fetch objects and nothing else.
The server is not expected to perform any further operations
on the objects.

We will now present a novel cryptographic index
CryptInd that allows DataGuard to search for files which
contain the required keywords.CryptInd consists of a set
of index entries{I1, I2, . . . In}. An index entry contains
information about the documents that contain a particular
keyword.

BuildIndex: An index entry Ii is a pair
< Hi, EMp(Bi) >. Hi represents the hash of a
keyword/word andBi represents a an arrays of bits. We
will refer to Hi as thekeyword hashandBi as thebitmap
of the index entryIi. Let Sf be the set of files being
indexed. Every filef ∈ Sf is given adocument id. This
id is different from the object id we discussed in section 2.
The generation of the document ids is done as follows: At
the beginning of BuildIndex, a counter is set to zero. For
every document being indexed, the counter is incremented
and its value is stored along with the file/object as the
document id.

Let KW represent the set of unique keywords that are
present in all the file inSF . For every keywordKi ∈ KW ,
an index entryIi =< Hi, EMp(Bi) > is created. The

7



www.manaraa.com

hash of the keywordhMP (ki) is stored inHi, where the
masterpassword (MP) is used as the key.

Bi is an array of2 × Nd bits, whereNd refers to the
number of documents initially being indexed. The size of
Bi needs to at leastNd bits due to the following: Letf.id
represent the document id of a filef . For every filef ∈ SF ,
thef.id th bit of Bi is set to 1, ifKi ∈ f . We use the bits
to keep track of the documents that contain the keyword.
CryptInd contains additional bits for documents that can be
created in the future. Therefore, the size ofBi is increased
to 2∗Nd, to allow some slack for futures updates. When the
number of documents exceed2∗Nd

5, there are two options:
a) build the index again with larger array size; or b) Split
the index entry into two. The id of the second index entry is
derived by hashing the id of the first entry. A flag bit is set at
the end of the first index entry which specifies to DataGuard
that an extra index entry needs to be fetched. Building an
index can take significant amount of time and hence the
latter approach is preferred. Splitting an index entry has one
disadvantage: When access to a index entry which has been
split is desired, it takes two rounds to fetch both the required
entries from the server. In DataGuard, after a significant
number of index entries have been split, the index is re-
built at the client. The bitmapBi is then encrypted by using
the masterpassword as the key to generateEMp(Bi) . The
index entries created in this fashion are then stored at the
server.

Storing the index: Each index entryIi is stored as
an objectOi at the server. The keyword hash of index
entry i.e.,Ii.Hi, is stored as the object’s nameOi.name.
nameis an attribute that is stored in the object’s metadata.
The encrypted bitmap of the index entry, i.e.,Ii.EMP Bi is
stored as the object’s contentOi.content. The metadata of
the objectOi.metadata containsindex = true attribute-
value pair. This will allow DataGuard to identify the object
as an index entry. The index objects are given automatically
generated ids.

Searching the index:Let Q = {W q
1 ,W q

2 . . . W q
m} be a

query which is a set of unique keywords. The objective is
find all the documents that contain all the words in Q. For
every wordW q

i ∈ Q, its hashhMP (W q
i ) is calculated and

corresponding index entry is retrieved from the server. Let
the setIq = {I1, I2, . . . Im} represent all the index entries
retrieved from the server in response to the query Q. All the
bitmaps of the index entries inIq are decrypted. LetI.Bi

represent the plaintext/decrypted Bitmap of index entry I.
Then, a conjunction of ANDs of all the Bitmaps inIq, i.e.
∧m

j=1Ij .Bi, is calculated.∧m
j=1Ij .Bi contains information

about the documents that satisfy the query. All the files
metadata whose ids are equal to the position of the set bits in
∧m

j=1Ij .Bi are fetched from the server. These files contain
all the keywords present in the query. The user can now

5Notice that we are not limited to the scaling factor of two.

choose to fetch the required file from the server by clicking
on it and invoking theReadFile function.

Updating the index: For every file f that is updated,
CryptInd needs to be changed at the server. Let us assume
that a file f is updated to its new statef

′
, DataGuard

calculates the differences betweenf and f
′
. Let W add

represent that new words that are added intof
′
and letW del

represent the deleted words fromf . Note, care should be
taken to make sure that all the words inW del are not present
in f elsewhere. All the index entries who keyword hashes
correspond to hash of words in the set{W add ∪W del} are
fetched from the server. The index entries are updated to
reflect the changes done to the filef . For all the words in
W del, the f.id th bit of corresponding index entry is set to
0. Similarly, for all the words inW add the f.id th bit of
corresponding index entry is set to 1.

Security Analysis: In [4], the authors propose a security
model for cryptographic indexes. We will use the security
model to show that CryptInd is secure. The intuition behind
the security model is as follows:A cryptographic index
is secure, if it does not reveal any information about the
plaintext/original data. More formally, the cryptographic
indexes need to besemantically secure. Semantic security
is a strong notion of security, which can be summarized in
the context of a cryptographic index as follows:

Semantic security for indexes: Let I1 and I2 be two
index entries of an cryptographic IndexI, corresponding
to two different keywordsK1 and K2 respectively. An
adversaryA is provided with{K1,K2} and{I1, I2}. A
does not know the relationship between keywords and the
index entries.A will try and guess the relationship between
them. LetPr[I1 → K1] be the probability thatA correctly
guesses thatI1 is the index entry for keywordK1. Note, if
A can correctly decide the relationship betweenI1 andK1,
then automaticallyA can deduce the fact thatI2 is the index
entry forK2. For the indexI to be semantically secure, the
following inequality should hold:

Pr[I1 → K1] ≤ (
1
2

+ ε)

whereε is a negligible real number.

Claim 6.1 CryptInd is semantically secure

Proof Sketch: Consider an AdversaryAwith knowledge of
two index entries{I1, I2} and the corresponding{K1,K2}.
Without loss of generality, let us assume that A is trying
to guess the index entry ofK1. Let I1.H1 and I2.H2 be
the keyword hashesof index entriesI1 and I2. Both the
keyword hashes are of equal length. Recall that a secure
cryptographic hash function is used in calculating the
keyword hashes of the index entries. Therefore, since secure
cryptographic hash functions aresemantically secure, the
adversary by looking at the keyword hashes of the index

8



www.manaraa.com

entries alone, will not be able to predict accurately the index
entry of keywordK1. Now consider the encrypted bitmaps
of the index entries. Standard encryptions functions are also
semantically secure, the bitmaps also will not reveal any
information. Both the keyword hashes and the bitmaps of
the index entries do not reveal any information forA. A
can now only guess randomly to find the correct index entry
for keywordk1 and will succeed with a probability of12 .

In the current version, CryptInd cannot handle pattern
based keyword queries, such as *Secur*, which are allowed
by the modern file systems. The next section describes how
CryptInd can be extended to handle pattern queries. We will
refer to the extended index as the CryptInd++.

6.1 Support for pattern queries

Definition q-gram: Let s be a string of lengthl. A q-gram
of a strings, is a substring ofs of lengthq, whereq ≤ l.

Consider the stringsecure. Substringsse and re are
examples of 2-grams ofsecure. Likewise, substringssec
andcur are examples of 3-grams.

Overview of approach: q-grams are essential in un-
derstanding our technique to support pattern queries.q
is a variable parameter that the user can change, which
determines the number of q-grams per string. CryptInd++
indexes such q-grams. CryptInd++ maintains index entries
that contain information about keywords which have a q-
gram in common. Given a pattern queryPq, CryptInd++
first calculates all the q-grams inPq. For all such q-grams,
CryptInd++ fetches the keywords that contain at least one
of the required q-grams. The keywords fetched are then
checked locally at the trusted client side if they match the
patternPq. Let Kp be the set of keywords that match the
pattern. For all the keywords inKp, similar to the technique
illustrated in CryptInd, the document ids that contain the
keywords are retrieved from the server and subsequently
the required documents. We will now explain all the above
steps in greater detail.

BuildIndex(CryptInd++): CryptInd++ contains two
types of index entries: a) Keyword index entries; b) q-gram
index entries.

Keyword index entries:Keyword index(KI) entries are
similar to the CryptInd index entries. KI entries are triples
< id, Hi, Bi, EMP (KWi) >. Hi andBi have the same
value/semantics as their namesakes in CryptInd entries.id
refers to keyword entry id that is assigned to every keyword
entry. At the beginning of BuildIndex, a counter is set
to zero. For every keyword being indexed, the counter
is incremented and its value is stored as the id for the
keyword entry.EMP (KWi) represents the actual keyword
encrypted using masterpassword as the key. We will refer to
it as theencrypted keywordpart of the keyword index entry.

Similar to cryptInd, for every unique keyword, a keyword
entry is created.

q-gram index entries: A q-gram entry is a tuple<
Hq

i , Bq
i >. Hq

i represents a keyed hash output of a q-gram
qi that is a substring to at least one keyword stored in the file
system. Bq

i is a set of pointers which point to a keyword
index entry. Bq

i contains the ids of the keywords which
contain the substringqi. We will refer toBq

i of a q-gram
entry as itspointer set. Care is taken so that the pointer
sets of all the q-grams are of equal cardinality. A procedure
similar to the one that maintains equal size of bitmaps is
also followed here. As we will show later, this is done to
ensure security.Bq

i is encrypted before being stored at the
server.

Storing the index: Similar to CryptInd, both the key-
word and q-gram index entries are mapped to objects and
then stored at the server.

Search: Let Qp = {Qp
1, Q

p
1, Q

p
n} be a query which a

set of patterns. The objective is find all the documents that
contain the words that match all the patterns inQp.

For every patternQp
i ∈ Qp, let Qp

iq represent the
set of q-grams in theQp

i . For every q-gram inQp
iq its

hashhk(Qp
iq) is calculated using the masterpassword as

the key and corresponding q-gram index entry is retrieved
from the server. Let the setIQ = {IQ1, IQ2, . . . IQm}
represent all the index entries retrieved from the server
in response to the queryQp. All the bitmaps of the
index entries inIQ are decrypted. LetI.Bi represent
the pointer setof q-gram index entry I. Then, a union of
all the Bitmaps inIQ, i.e. ∪m

j=1IQj .Bi, is calculated.
∪m

j=1IQj .Bi contains information about the keywords that
could potentially satisfy the queryQp. For every pointer in
∪m

j=1IQj .Bi, the corresponding keyword entry is retrieved
from the server. LetKWI represent the set of keyword
entries retrieved from the server. Now DataGuard checks
for the keywords inKWI that match atleast one of the
patterns inQp. This is achieved by decrypting the encrypted
keyword part of the index entries inKWI . For all the
keywords inKWI that match, a procedure similar to the
search in cryptInd is followed to retrieve the metadata of
the files that contain the required patterns. The user can
now choose to download any files that he/she desires.

Updates: The procedure to updates does not change
much with respect to cryptInd. If a new keyword index
entry needs to be added, then new q-grams entries also
might need to be added, since the required q-grams may
not be present in the current q-gram index entry set.

6.2 The value of q

For a string S of length, there are(n − q + 1) q-grams.
The proof is by mathematical induction. In the worst case,
the number of q-grams will far outnumber the keywords.

9



www.manaraa.com

In CryptInd++, we only index unique q-grams. In practice,
they tend to be less than the keywords indexed ( for q =3).
Increasing the value ofq potentially decreases the number
of q-grams that need to be indexed. On the other hand, it
reduces the flexibility in generating the pattern queries to
the user. In DataGuard, the value of q is set to 3.

6.3 Analysis

6.3.1 Security Analysis

Claim 6.2 CryptInd++ is semantically secure.

Proof Sketch: CryptInd++ contains two different types of
entries. We now need to prove that both types of entries
are semantically secure. From claim 6.1 it should be clear
that keyword entries are semantically secure. The q-grams
entries are also semantically secure, since given two q-
gram entries, the attacker cannot difference between the
two. Like the keyword entries, q-grams also employ a hash
function and an encryption function internally, which are
semantically secure.

Song et.al. [7] describe three essential properties for a
cryptographic search technique. We will now informally
show that CryptInd++ satisfies all the three properties.

Hidden Queries: This property states that server should
not know the keyword being queried. In our scheme, the
actual keyword is never revealed, only its hash value is sent
to the server.

Controlled Searching: This property states that the
server should not be able to generate trapdoors for any given
keyword. In our scheme, the hash value of the keyword
that is sent to the server is the trapdoor. Since we use
a masterpassword during the hashing process, the server
cannot compute trapdoors locally.

Query Isolation: This property states that the server
should learn nothing about the documents other than the
search results. This follows directly from the CryptInd++
semantic security result that we proved previously. The
index does not reveal any information at the server side.

6.3.2 False positive analysis

In our search technique, to answer a keyword query, some
extra information is fetched from the server. This sec-
tion quantifies the extra information/false positives fetched.
Note that such false positive information is filtered at the
client side. In CryptInd++, given a pattern query Q, we first
extract all the q-grams in Q. Letqs represent the set of such
q-grams. Then, q-gram entries that represent the q-grams in
qs are fetched. LetqI

s represent such q-gram entries.
Then, an intersection of all the keywords that are indexed

in qs is calculated and there corresponding keyword entries

are fetched from the server. LetKS represent the set of
keyword entries that are fetched from the server. Now,
there are three kinds of false positives that are possible in
CryptInd++: a) The false positive pointers/references to
keywords inqI

s ; b) Keywords inKS that do not match the
pattern/s in Q even though they contain all the q-grams in
qs; c) Keywords inKS that do not contain all the q-gram in
qs.

Case a: A q-gram entry inqI
s could contain refer-

ences/pointers to keywords that do not satisfy all the q-
grams inqs. We will now try and quantify suck keyword
pointers. Let|qI

s | = k. Then, the number of false positive
pointers are equal to:

KW (q1) + KW (q2) + . . .KW (qk)−KW (q1 ∩ q2 ∩ . . . qk)

Where functionKW (qi) represents the cardinality of
the pointer set belonging to the q-gram index entry that
represents the q-gramqi. Similarly, KW (q1 ∩ q2 ∩ . . . qk)
represents the keywords references/pointers that are found
in all the q-gram entries inqs. In this case, there is a
potential for a large number of false positives. The false
positives monotonically increase with the increase in q-
grams in the pattern query.

Case b: It is very difficult to quantity the number of
keywords inKS that do not match the pattern/s in Q, since
it largely depends on the dataset. We will first quantity
the expected number of keywords in a dataset that contains
all the q-grams inqs. Then, we will show that such a
number decreases exponentially with increase in q-grams.
This result provides the intuition that while it is possible
that a significant number of false positives are fetched from
the server when the number of q-grams inqs are low, in a
fairly typical case the false positives are not that significant.

Let |qs| = n. Also, letPj be the the probability that a
g-gramqj appears in a keyword w.r.t to the dataset that is
being indexed. Then, the probability that all the q-grams in
qs appear in a keyword is

∏n
i=1 Pi. LetNk be the number of

the unique keywords in the dataset. Therefore, the expected
number of keywords that contain all the q-grams inqs is
equal toNk ×

∏n
i=1 Pi.

In the worst case, all theNk ×
∏n

i=1 Pi keywords can
be considered as false positives, i.e, they do not satisfy the
pattern in Q. Since probability that a q-gram is present in
a keyword is inversely proportional to the number of the
keywords, the quantityNk ×

∏n
i=1 Pi decreases exponen-

tially with increase in number of q-grams present inqs.
Therefore, false positives decrease exponentially with the
increase in the q-grams in the pattern Q.

Case c: Keywords inKS do not necessarily have to
contain all the q-grams inqs. Since hash collisions are
possible, two or more q-grams can map to the same hash
value. Therefore, keywords inKS can contain other q-
grams which map to the same hash value to that of q-grams

10



www.manaraa.com

in qs.
We will now analyze the probability that there exists a

keyword inKs that does not contain all the q-grams inqs.
LetNq be the number unique q-grams in file system/dataset.
Also, letSh be the size of the hash function output in bits.
Then,

Pr[a given qgram q collides]= (Nq−1)

2Sh

Pr[q-gram q does not collide]=1−Nq−1

2Sh

Pr[ No collision for all the q-grams inqs]=(1−Nq−1

2Sh
)|qs|

Pr[false positive]=1−Pr[ No collision for all the q-grams inqs]

=1−(1−Nq−1

2Sh
)|qs|

=1−e

(Nq−1)|qs|
2Sh

In DataGuard we use the SHA512 cryptographic hash
algorithm which outputs a 512 bit long string. HenceSh =
512. For any reasonable value ofNq andqs, the probability
of a false positive is nearly equal to zero.

In summary, CryptInd++ is a semantically secure cryp-
tographic index that allows the DataGuard middleware to
search for keywords on encrypted data. The novelty of
CryptInd++ lies in the fact that no changes are necessary
at the server side and it supports pattern queries, unlike the
previous approaches.

7 Experiments

The goal of our experiments was to measure the per-
formance of our system. DataGaurd’s scalability is not
much of an issue, since scalability depends on the sys-
tems maintained by the Internet storage providers. More
concretely, we wanted to measure the performance of our
middleware in enforcing data confidentiality constraints
by encrypting/decrypting data objects, calculating data in-
tegrity information, and the network costs associated to it’s
usage.

Experimental Setup: Our experiments were conducted
on the three layers that we mentioned before. The DB layer
utilizes a IBM DB2 database as the storage server. This
database was running on an 8 processor pentium machine
with 32 GB Ram in our laboratory. The Gmail layer was
written for a major commercially available web based email
provider (Gmail web service). For the experimental data,
we used a local file system of one of the authors. The file
system was outsourced via the DataGuard middleware to
both the storage servers. We accessed the data via a laptop
machine containing an Intel Celeron(R) 1.80 Ghz processor
with 786 MB of RAM.

Results: Our first experiments were to measure the net-
work costs. Figures 4 and 5 report the file transfer/download

times for all the three layers when the files were accessed
from a laptop.

Not surprisingly, transfer times increase linearly with
the file size. Since the DB layer was using a database
that was geographically very close to the laptop, we are
getting excellent file transfer rates. The transfer times for
the Gmail layer were slower than that of the Amazon layer.
One interesting thing to note was, for the Gmail layer, the
download times were slightly slower than the upload times.
The reason is the following: For storing/fetching files, the
translational layer needs to send HTTP requests to the web
based email provider. While, one HTTP request is sufficient
for storing a file, it required 3 HTTP requests for fetching
a file. First we had to use the search interface given by the
email service provider to locate the email with the required
object and then fetch it.

Our second experiment was to measure the crypto-
graphic costs of DataGuard. Figure 6 reports the different
cryptographic costs in DataGuard . The encryption times
were very similar to the decryption times and they exhibit
a very linear behavior. The integrity costs were lower
than the encryption costs. The interesting things about
this experiment was that fact the when compared to the
network costs, thecryptographic costspale in compari-
son. Therefore, the security itself is not degrading the
performance of DataGuard by much. To confirm this
intuition we conducted another experiment to measure the
overhead for using DataGuard. We used cockpit, a tool that
allows users to upload files to their Amazon S3 account.
We measured the time taken to perform some standard
file system operations via cockpit and DataGuard. Fig 7
reports the relative times. Not surprisingly, with DataGuard
takes longer than cockpit to execute the operations, but the
difference is negligible. This implies there isno major
performance degradation due to DataGuard.

Our final experiment was to measure the performance of
CryptInd++ cryptographic index. We ran different pattern
search queries and measured the time taken to answer the
queries across all the three layers. Fig 8 reports the relative
index search times for the three layers. Index search is very
fast in DataGuard. The DB2 layer has the best performance,
due to its close proximity to the client machine. In the
Amazon layer, most search queries can be answered close
2 secs. The Gmail layer is the slowest of all the three
layers. The reason is the following: The Gmail service
temporarily disbands an account if a lot of emails are sent
to the server with a small time period. Due to this reason,
we were forced to store a large number of index entries
in one email. Ideally, we would have stored one index
entry in an email. Due to this restrictions, a significant
amount of the CryptInd index needs to be fetched from
the server to answer the query. Hence, the degradation in
performance when it comes to Gmail. There are no such

11



www.manaraa.com

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

100 300 500 700 900 2048 4096 6144 8192 10240
File Size (KB)

Time (ms)

DB2 Transfer Time

Gmail Transfer Time

Amazon Transfer Time

Figure 4. Network costs,
transferring files

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100 300 500 700 900 2048 4096 6144 8192 10240
File Size (KB)

Time (ms)

DB2 Download Time

Gmail Download Time

Amazon Download Time

Figure 5. Network costs,
downloading files

0

500

1000

1500

2000

2500

3000

3500

4000

4500

100 300 500 700 900 2048 4096 6144 8192 10240
File Size (KB)

Time (ms)

Encryption

Decryption

Integrity

Figure 6. Cryptographic
costs

0

500

1000

1500

2000

2500

Create File Open File Make Directory Cut&Paste

File System Operation

Time (ms)

AmazonS3 With DataGuard

AmazonS3 Without DataGuard

Figure 7. Overhead of
DataGuard

0

5000

10000

15000

20000

25000

30000

35000

4 6 8 10 15 20
Number of q_grams

Time (ms)

Gmail 

Amazon

DB2

Figure 8. CryptInd++
Search

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

20 40 60 80 100 500 1000
Number of Keywords

Time (ms)

Gmail Index Update

Amazon Index Update

DB2 Index Update

Figure 9. CryptInd++ Up-
dates

issues with Amazon service and hence there is a noticeable
improvements in the performance.

In the next experiment, we wanted to measure the cost
of updating the index. A similar trend also exists in Index
Updates. Fig 9 shows the results. The Gmail layer is much
slower than the Amazon layer. To update 1000 keyword
entries, it takes 1.4 secs in Amazon and 79 secs in Gmail.
Since with some IDPs, the updates could be slow, there is
a requirement to explore smart update algorithms that bulk
update the index. This way, the client does not have to wait
for a significant amount of time every time he updates a
file. Although, this process generally can be in background,
when the client machine is idle.

Another interesting experiment was to measure the q-
grams/keywords ratio. Fig 10 illustrates the results. The
number of q-grams indexed decrease as the keywords in-
dexed increased. This is due to the fact that as keywords
increase they tend have more and more q-grams in common.

Under Construction

8 Related and Future work

8.1 Related Work

Network file systems [18, 19, 20] allow users to out-
source their information to a remote server. An authorized
client can then mount the file system stored at the server.
Typically in these systems, the server is trusted and is in
charge of authentication of the users and enforcing access
control on data. This is not the case in DataGuard.

Cryptographic file systems [2, 15, 13, 14] on the other
hand are very related to our work. Cryptographic file sys-
tems do not trust the end storage and all the cryptographic
operations are done at the trusted/client side. Cryptographic
file systems such as Sirius [13] and Plutus [14] also allow
sharing of files between users, where access to files is
provided via key distribution. DataGuard currently does
not deal with sharing, although it is one of our future
goals. We differ from the cryptographic file systems in
the following manner: a) cryptographic file systems do not
adopt to the heterogeneity of data models of the server side.
Typically, they assume a file system based model at the
server. DataGuard on the other hand can easily adapt to
the heterogenous data models at the server.

12



www.manaraa.com

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1000 2000 4000 6000 8000 10000
Number of Keywords

Qgrams / Keywords

Figure 10. Q-
gram/Keyword ratio

 

0

100

200

300

400

500

600

1 2 3 4 5
Number of Keywords

False Positive

Figure 11. False positives
in q-gram index entries

DAS [11, 12] architectures allow clients to outsource
structured databases to a service provider. The service
provider now provides data management tasks to the client.
The work on DAS architecures mainly concentrated on exe-
cuting SQL queries over encrypted data. The clients of DAS
architectures are mainly organizations that require database
support. Both the DAS architectures and DataGuard can
be thought of as instantiations of the outsourced database
model ( ODB ). The key differences are: a) The data
outsourced in DAS is highly structured. In DataGuard, the
data oursourced is semi-structured. b) DAS architectures
did not deal with mobility issues, which is one of the
primary goals of DataGuard.

Distributed file systems like oceanstore [10] provide a
storage infrastructure for the users to store data on the
network rather than at a centralized server. In ocenstore, the
files are treated as objects and are replicated across multiple
locations. The goal is to ensure availability, scalability
and fault tolerance. DataGuard should not be treated as a
distributed file system, since middleware treats the storage
providers as a single logical entity. This does not imply that
the service providers do not implement a distributed storage
infrastructure. On the other hand, DataGuard does allow
users to mount different file systems with multiple storage
providers.

In DataVault [21], the authors proposed a client-server
architecture which allows users to outsource their file sys-
tems to an untrusted server. The server then provides data
services on top of outsourced data. DataGuard is not a
client-server architecture, it is a middleware that is trying
to utilize the storage space provided by untrusted servers on
the Internet. In DataVault, the authors were able to design a
server architecture from scratch that suits their data storage
requirements. DataGuard middleware on the other hand has
to work/adapt to the current data storage infrastructures of
the IDPs.

Jungle disk software[?] layers a security mechanism over
the Amazon S3 storage service. Unlike DataGuard, Jungle

Disk can only function with the Amazon S3 service. Jungle
Disk also provides a file system like interface to the user
and preserves data confidentiality of the user by encrypting
the data stored remotely. The user can provide a password
as the key to encrypt the data. To the best of our knowledge,
Jungle Disk does not verify the integrity of the data.

8.2 Future Work/Open Problems

In this section we will describe some of the open prob-
lems in DataGuard. The following problems will be the
main focus for our future work in DataGuard.

Accessing Information from Untrusted Machines:
Recall that we have initially made an assumption that all
end devices the user access his/her data are trusted. While
in most cases this is true, in some cases it isn’t. For instance,
consider Alice who is traveling without a laptop. She needs
to access her data from a publicly accessible machines
such the ones that are avaialble in cybercafe or a public
machine. Such public machines can harbor macicious
entities which could steal Alice’s masterpassword. A
simple keystroke logger will accomplish the job. Clearly,
this is undesirable. We need techniques to to access
personal data from untrusted data. In [1] the authors
propose a proxy based solution to access websites securely
from untrusted machines. We envision a similar solution
could solve the above problems.

Sharing of Documents: In this paper, we only con-
sidered the problem of accessing data remotely. When it
comes to personal information another requirement is the
ability to share it. Currently, users use a variety of ways
to share data: a) via email; b) running public servers, etc.
DataGuard middleware could potentially could be extended
to allow data sharing as well. This raises many challenges
interesting challenges, since to enable data sharing the
untrusted servers should authenticate users and distribute
data. This needs to be done in a fashion where the server
does not learn any user’s data.

13



www.manaraa.com

Building applications on DataGuard’s framework: In
the current avatar, DataGuard allows users to outsource
their file system. There are many data services that can
be built on top of such framework. For instance, consider
autofill information of browsers. Such information is
typically maintained as a file in the local hard drive. If
the user allows DataGuard to outsource such files, then
DataGuard can fetch the autofill information and install it at
the appropriate place without bothering the user. Thereby,
the user can now have his passwords, usernames, etc.
automatically filled out wherever he/she goes. We will
exploring such applications in the context of DataGuard.

9 Conclusions

In this paper we presented DataGuard, a middleware that
allows users seamless access to their data from heteroge-
nous data storage providers on the Internet. DataGuard
ensures the confidentiality and integrity of the user’s data.
DataGuard utilizes a novel index based approach to allow
keyword based search on encrypted data. Our main goal
is to release the DataGuard middleware as an open source
software that will allow experts or webmaster to write
translation layers compatible with DataGuard. This will
allow storage providers to provide data services on top
on DataGuard. We have currently developed a prototype,
which we intent to thoroughly test before releasing it to the
public. A beta version of the DataGuard software can be
downloaded at http://DataGaurd.ics.uci.edu.

References

[1] Ravi Chandra Jammalamadaka; Timothy van der
Horst; Sharad Mehrotra; Kent Seamons; Nalini
Venkatasuramanian. Delegate: A Proxy Based
Architecture for Secure Website Access from an
Untrusted Machine. 22nd Annual Computer Security
Applications Conference (ACSAC), Maimi, FL,
December, 2006

[2] M.Blaze. A cryptographic file system for UNIX. Pro-
ceedings of the 1st ACM conference on Computer
and communications security.

[3] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-
Molina, K. Kenthapadi, R. Motwani, U. Srivastava.
D.Thomas, Y.Xu. Two Can Keep a Secret: A Distrib-
uted Architecture for Secure Database Services.2nd
Biennial Conference on Innovative Data Systems
Research, CIDR 2005.

[4] Eu jin Goh. Secure Indexes. In submission

[5] RSA Laboraties. PKCS #5 V2.1:
Password Based Cryptography Standard.
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-
5v2/pkcs5v21.pdf

[6] Ravi Chandra Jammalamadaka, Roberto Gamboni,
Sharad Mehrotra, Kent Seamons, Nalini Venkata-
subramanian. DataGuard: A Middleware Layer
Providing Seamless Mobile Access to Personal Data
via Untrusted Servers. Techincal Report

[7] D. Song, D.Wagner, and A. Perrig. Practical
Techniques for Searches on Encrypted Data. In
2000 IEEE Symposium on Research in Security and
Privacy.

[8] Briney, Andrew. 2002. The 2001
Information Security Industry Survey
2001 [cited October 20 2002].
http://www.infosecuritymag.com/archives2001.shtml

[9] Dhillon, Gurpreet, and Steve Moores. 2001. Com-
puter crimes: theorizing about the enemy within.
Computers & Security 20 (8):715-723.

[10] S.Rhea, P.Easton, D.Geels, H.Weatherspoon.,
B.Zhao, and J.Kubiatowicz. Pond: The oceanstore
prototype. In the proceedings of the Usenix File and
Storage Technologies Conference(FAST) 2003.

[11] Hakan Hacigumus, Bala Iyer, Chen Li, and Sharad
Mehrotra. Executing SQL over Encrypted Data in
the Database-Service-Provider Model.2002 ACM
SIGMOD Conference on Management of Data, Jun,
2002.

[12] E.Damiani, S. De Capitani Vimercati, S.Jajodia,
S. Paraboschi, P.Samarati. Balancing confidentiality
and efficiency in untrusted relational DBMSs. Pro-
ceedings of the 10th ACM conference on Computer
and communications security.

[13] E. Goh, H. Shacham, N. Modadugu, and D. Boneh,
”SiRiUS: Securing remote untrusted storage,” in
Proc. Network and Distributed Systems Security
(NDSS) Symposium 2003.

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu, ”Plutus: Scalable secure file sharing on
untrusted storage,” in Proc. 2nd USENIX Conference
on File and Storage Technologies (FAST), 2003.

[15] E.Zadok, I.Badulescu, and A.Shender. Cryptfs: A
Stackable vnode level encryption file system. Tech-
nical Report CUCS-021-98, Columbia University,
1998.

14



www.manaraa.com

[16] G.Miklau, D.Suciu, Controlling Access to Published
Data Using Cryptography. VLDB 2003: 898-909

[17] E.Bertino, B.Carminati, E.Ferrari, B.Thuraisingham
and A.Gupta. Selective and authentic third party
distribution of XML documents.

[18] S.Shepler, B.Callaghan, D.Robinson, R.Thurlow,
C.Beame, M. Eisler, and D. Noveck. NFS version 4
protocol. RFC 3530, April 2003.

[19] J.Howard. An overview of the andrew file system.
In proceedings of ACM symposium on parallel
algorithms and architectures. SPAA, 2002.

[20] David Mazires. Self-certifying file system. Phd
Thesis. 2000

[21] R.Jammalamdaka,S.Mehrotra, K.Seamons,
N.Venkatasubramanian. Providing Data Sharing
as a Service. Technical Report.

[22] http://www.aws.amazon.com/s3

[23] http://www.apple.com/dotmac/

[24] Ravi Chandra Jammalamadaka, Roberto Gamboni,
Sharad Mehrotra, Kent Seamons, Nalini Venkata-
subramanian. gVault. A Gmail Based Cryptographic
Network File System. To appear in the proceedings
of 21st Annual IFIP WG 11.3 Working Conference
on Data and Applications.

10 Appendix

15



www.manaraa.com

Figure 12. Snapshot of the DataGuard application/middleware. The interface is similar to the one
provided by the modern operating systems. DataGuard is implemented in Java.

16


