A Middleware Approach for Building Secure Network Drives over Untrusted
Internet Data Storage

Ravi Chandra Jammalamaddk&oberto Gambofii Sharad Mehrotrg Kent E. Seamoris
Nalini Venkatasubramanign
University of California, Irving, Brigham Young University, University of Bologna, Italy
{rjammala, sharad, nalip@ics.uci.edu seamons@cs.byu.edu roberto.gamboni@studio.unibo.it

Abstract pushing the burden of data management to the user. Also,
the solution in inherently insecure, as most users store their
In this paper, we present the design of DataGuard data in plaintext. Such devices can be easily lost or stolen;
middleware that allows users to outsource their file sys- i) Maintaining public servers such as web servers, FTP
tems to heterogeneous data storage providers available onservers, etc. The drawbacks of this solution are twofold:
the Internet. Examples of data storage providers include &) Administering such a service is burdensome and requires
gmail.com, rapidshare.de and Amazon S3 service. Insound technical knowledge; and b) Many users are not in
the DataGuard architecture, data storage providers are a position to run such a service due to ISP restrictions.
untrusted. Therefore, DataGuard preserves data confiden-Likewise, to share data, users employ solutions like sending
tiality and integrity of outsourced information by using email, etc., which suffer from similar drawbacks listed
cryptographic techniques. DataGuard effectively buidds above.
secure network driven top of any data storage provider By comparison, services offered by the IDPs do not
on the Internet. We propose techniques that realigeaure suffer from the above drawbacks and have the following
file systemover the heterogeneous data models offered by advantages: ajvailability: Data is available 24/7 from
the diverse storage providers. To evaluate the practicality any computer connected to the Internet; lw cost:
of DataGuard, we implemented a version of the middleware Typically, the services are free. The business model is
layer to test its performance, much to our satisfaction. based on advertisements, emphasizing the fact that storage
has become very cheap; §ood Service: The storage
providers typically employ experts, thereby providing very
high quality service. All of the above advantages make IDPs
an attractive prospect for data storage.
o The primary limitation of such services is the require-
Recently, there has been an explosion in the numberment totrustthe storage provider. The client's dasastored

of Internet data storage providers (IDP) that are emerg-jn plaintextand therefore is susceptible to the following
ing. Examples of such services include: Rapidshare.de,gitacks:

Youtube.com, Megaupload.com, Yahoo Briefcase!, Ama- .) .

zon S3 service, etc. The clients outsource their data to ® Outsider attacks: There is always a possibility of
IDPs, who provides data management tasks such as storage, ~ INternet thieves/hackers breaking into the storage
access, backup, recovery, etc. IDPs offer numerous benefits ~ Provider's system and stealing or corrupting the

1 Introduction

to users, which include: device IndependenceClients user's data. o

can access their information from any machine connected ©® Insider attacks: Malicious employees of the storage
to the Internet; and Hpata Sharing:The IDPs provide data provider can steal the data themselves and profit from
sharing capabilities that allow users to share their data with it. There is no guarantee that the confidentiality and
any user on the Internet. integrity of the user’s data are preserved at the server

side. Recent reports indicate that the majority of

Currently, users employ a variety of ways to achieve -
Y poy y y attacks are insider attacks [9, 8].

mobility when it comes to personal data. The range of
solutions include but are not limited to: i) Carrying their Despite these security concerns, IDPs are gaining pop-
data in secondary storage devices such as USB drivesularity due to the convenience and usefulness of the data
CD/DVDs, etc. This is a largely inconvenient solution services they offer. In this paper we present the design

www.manaraa.com

and implementation of DataGuard, a middleware b — - — _ _ DawGuardMiddleware_ _ _ _ _ _ _ .

architecture that allows the users to outsource their di :
untrusted IDPs. Our goal is to develop a middleware |
a client can run on their local machines, which can intt : Client File operation | G
|
|
|
|
1

Serverside |

Store object requests
fetch object | TL) ™ aereer se IDP,
objects responses |

o 1 o

o
|

o

with the IDPs of their choice and yet manage the clit Application
data securely. We address the problem at the file
i.e., the users outsource their local file system to the |
DataGuard effectively builds a network drive ontop of t L _ o @ o e e e e e e e e — o 1
storage provided by the IDP.

There are three primary reasons that motivates our Figure 1. DataGuard Architecture
on designing such a middleware: Rypularity: Network
drives are very popular because they allow users re
access to their data. They effectively provide a vil
disk that users can carry around seamlessly without inucr
effort. This is precisely the reason why there are many
commercial IDPs offering anetwork drive likeservice
on the Internet [22, 23]; bBecurity: Data should be
secured before being outsourced to an untrusted server. b
General applicability: A wide variety of applications can
be supported by &ile storagelike service. For instance,
consider the following sample applications that can be
supported: a) arautofill application which remembers
and fills out passwords from any machine connected to the

Internet. b) abookmark managewhich provides remote model called the generic database model that can be easily
access to personal bookmarks. e i
. i translated to the specific data models at the server; c) A

DataGuard allows users to specify which IDP they want gecyrity model that allows DataGuard to enforce security
to store their data. To provide such functionality, DataGuard .5nstraints of the user at the data level: d) A novel index
needs to take into account the heterogeneity of the d‘?‘t%ased approach of executing such keyword based queries
models that are offered by the IDPs. For instance, in ot the server; and d) A prototype implementation of the
Amazon S3 service, files are the basic units of data, while p5taGuard middleware.

in Gmail.com, emails are the basic data units. One of RoadMap: In section 1.1, we provide a brief overview
the fundamental tenets of DataGuard is make surenbat ot 1o pataGuard architecture. Section 2 presents the

changes are required at the server to support DataGuard generic data model. In section 3.1 and 3.2, we present
The servers are oblivious to the existence of DataGuard. security model over GDM. In section 4, we present the
To combat such heterogeneity, DataGuard provides a novejiterent client-server interactions in our model. In section

general model of a file/data, that can then be further cus-5 e gescribe the specifics of the translational layers. In

tomized to individual IDPs. We Wi_II call this model as the gection 8, we present our novel cryptographic index that
generic data mode{GDM). We will propose techniques anqles keyword searches on encrypted data. In section

to map the generic database model to server side dat& e present the performance results of the DataGuard
representation. Since the IDPs are untrusted in our mOdeIprototype.

we propose a&ecurity modethat will allows DataGuard to
ensure data confidentiality and integrity of user’s data by 1.1
using cryptographic techniques. ’

DataGuard supports all the operations supported by
modern file systems such as creating a directory, readingf

) oll
a file, etc. DataGuard also allows users to search for o
documents that contain a particular keyword. Such a task ® Allow users to outsource their file system to any

Server side
requests
fechobiest | TLy ™ Soversie IDP,
objects responses

Store object

based queries at the server. The proposed index is carefully
designed not to disclose any information to adversaries.
Previous work [7, 4] on executing queries over encrypted
data cannot be utilized in the context of DataGuard, since
the previous work assumes that the server is cooperative
nd runs a compliant protocol for enabling search. We
annot make such an assumption, since in the DataGuard
architecture, no changes are possible at the server.

Our contributions in this paper are the following: a) A
novel middleware based architecture called DataGuard, that
allows users to outsource their information to any Internet
data storage providers of their choice; b) A novel data

Architectural Overview

The desirable properties/goals of DataGuard are the
owing:

data is encrypted at the server. The obvious solution of ® Preserve security properties of user data such as data
fetching all the encrypted data from the server, decrypting integrity and confidentiality.

it and executing the query locally is impractical as it puts ~ ® DataGuard should be easy to use.
tremendous performance strain on the system. We develop Major Entities and Threat Model: There are three
a novel index based approach of executing such keywordmain components in our architecture: a) Client machine;

www.manaraa.com

b) DataGuard middleware; and c) Data storage providers.individual IDP. We envision that these translation layers
The Client machine is the end device from which the user will be written by experts or the webmasters of the IDPs
is accessing the data. The client machine is entirely trustedthemselves, if DataGuard becomes popular. Currently, we
The DataGuard middleware and it's associated componentshave written three such layers which we will introduce soon.
i.e. translational layersare also trusted and run inside the The translational layers can be written fairly easily for most
client machine. We will explain the role of the translational IDPs on the Internet.
layers soon. The middleware is in charge of providing Objects provide a higher level/general enough abstrac-
data services to the user by fetching the required datation, that allow data items smaller than a file to be stored
from the storage providers. The storage providers provideand fetched from the server. Although, in DataGuard’s
data management services to the clients and are untrustecturrent avatar we do not fetch anything smaller than a file.
We will assume donest-but-curioubehavioral model for ~ We adapted the object oriented approach to accommodate
the storage providers. That is, the storage providers areour future directions with regard to DataGuard. Alterna-
expected to provide the required services, but the employeesively, instead of operating at an object based data model,
that work for such providers could steal data and profit from DataGuard could have followed an XML based data model.
it. The drawback of such an approach is: XML requires fairly
Overview: Figure 1 illustrates the overall architecture thick parsers that make the DataGuard middleware fairly

of DataGuard. DataGuard is both a client application and aPulky. We therefore, decided to design a fairly simple but
middleware that runs at the user's client machine. When thefl€xible enough object based data model called the generic
application is first started, the middleware will ask for the dat@ model that we will describe in the next section.
name/URL of the storage provider, username and password ©Our goal is to develop DataGuard and release an API
for authenticating to the storage provider. In addition, that will allow experts orwebmasters to release transla_tlon
DataGuard requires users to provide a masterpassword, layers based on this API that will allow users to use a variety
secret used to enforce data confidentiality and integrity. ©f IDPS as storage servers.

Masterpassword is the only secret that the user needs to

remember for using DataGuard and it is used to generate2 Generic Data Model

all the cryptographic keys. After the user specifies the

data in a login screen, the middleware fetches the file Thegeneric data mod€lGDM) is an object-based model
system content from the server and providefeasystem for representing files and directories in DataGuard. The
like view to the user. All the standard operations of a GDM middleware creates object instances and invokes
regular file system are available to the user. Once thegperations on them according to an API that supports the
user closes a session, any temporary files that are openegtorage and retrieval of DataGuard objects. The GDM

by the middleware application are closed. The user canjs simple and generic enough that to support a variety of
repeat the process for multiple different storage providers storage providers.

and DataGuard provides a common interface for accessing Each GDM objectO has a uniqued (O.id) and a set

all the respective file systems. of attributesO.A where A = {id, content, metadata}.

The atomic unit for data retrieval in DataGuardiles O.content represents the object’s content addnetadata
The client application requests files from the middleware. represents the ancillary information about the object. The
But DataGuard middleware does not work with a file based metadata is a set adttribute=value pairs. DataGuard
data model. Instead, it works on an object based data modestores and deletes data at the object level at the storage
called the generic data model (GDM). DataGuard middle- provider. Updates to objects are modeled as a delete
ware first maps files to objects in GDM and also translates operation followed by an insert/store operation.
file system operations to their equivalent operations on the
object. We will discuss them in more detail in section 4. 2.1 Mapping a file system to the GDM
The object level abstraction is necessary since IDPs vary
significantly when it comes to data storage models. For Conceptually, a file systents can be represented as
instance, Yahoo mail and Gmail work with email based a graph having the structure illustrated in fig 2. Every
data abstractions, and Rapidshare.de and MegaUpload.cordirectory and file is a node in the graph. An edge between
work with a file based data abstractions. The objects aretwo nodes represents tharent-childrelationship. The “*”
then further translated into individual data models of the operator implies zero or more nodes, adigectory node
storage providers byanslational layers Translation layers ~ can have zero or more files or sub-directories.
contain functions that store and fetch objects from the In DataGuard, every file and directory node is treated
IDP. Since the implementation of these functions vary from as an object. Each object has its owmique id We will
IDP to IDP, translation layers need to be written for each explain the generation of such ids shortly. For a file, the

www.manaraa.com

Directory encryption specification PKCS #5 [5]. The KDF function
‘// \ calculates keys from passwords in the following manner:
metadata *
/ * Key = KDF(Password, Salt, Iteration)
File

The Salt is a random string to prevent an attacker

from simply precalculating keys for the most common
Metadata Content passwords. The KDF function internally utilizes a hash
function that computes the final key. To deter an attacker
from launching a dictionary attack, the hash function is
applied repeatedly on the outpiteration times. This
ensures that for every attempt in a dictionary attack, the
adversary has to spend a significant amount of time. In
object’s content@.content) is the content of the file. The DataGuard, to generate the OEK for an objéctwe use
object’s metadata({.metadata) includes information such ~ the masterpassword as the password, the id of the object
as the file name, last modified date, file size, etc. Theas the salt, and we set the iteration count to 1000, the
object’s name@.name), is the name of the file. recommended number.

For a directory, the object's conter® (content) is set Another approach is to generate a random key for each
to null*. The object’s name(.name) is the name of the object and encrypt the object with that key. The random
directory. The metadata of the directory object will include key could then be encrypted with the key derived from
directory name, size of the directory, directory contents, etc.the masterpassword. We chose to generate the key since

Additionally, the directory object maintains a it is inexpensive using a hash function rather than retrieve
child_referencesttribute in the metadata. Chileéferences a key along with each object from the server. This saves
contains a list of pointers to the immediate children of the network overhead, especially for small objects when the
directory node/object. The pointers contain the id of the cost of retrieving the key would dominate.
object being referenced to allow DataGuard to fetch the

Figure 2. Graph representation of a file
system

child nodes of a directory when required. 3.2 Data Integrity
Id Generation: The object ids are randomly generated.
For every objectO;, a ramdom number; is generated Another requirement of DataGuard is that data integrity

and hashed deterministically,;»(r;) using the master- be preserved. This section describes how DataGuard en-
password (MP) as the key to determine the object(;idd. sures that data is booundandComplete
The reason for hashing the id will be apparent in the next Soundness: To ensure soundness of an object, Data-

section. Guard needs a mechanism to detect when tampering occurs.
To achieve this, the HMAZof an object is calculated and
3 Enforcing Security Constraints stored on the server. When the object is retrieved from the

server, its HMAC is also returned. The client calculates an
HMAC again and compares it to the original HMAC. If they
are equivalent, then no tampering has occurred. One way to
compute the HMAC is as follows:

3.1 Data Confidentiality

In DataGuard, the user’s outsourced data is kept con-

fidential. A DataGuard objedd contains the following HMAC(0.id||0.name||0.Content||0.metadata)
attributes{ id, name, content, metadaja This section
describes how the confidentiality of DataGuard data is Although the HMAC can be used to determine sound-
achieved. ness, it does not guarantee freshnes®f the object. That
id attribute: The id of the object does not reveal any s, the server could return an older version of the object and
information about the object at the server side and hence itthe client will fail to detect it. One way to address this is
is left untouched. The object’s id is used to fetch it from the to include the current version of the object when generating
Server. the HMAC. Thus, the HMAC can be generated as follows:
Content, name and metadata attributes: An object’s
metadata, name and content are encrypted usingpijeet’s HMAC(0.id||O.name||O.Content||O.metadata||V ersion)
encryption keyOEK). The key is generated on the fly using

the key derivation function (KDF) of the password-based Every time the object is updated, the version number is
increased and the HMAC calculated again. This is done at

1The directories in many modern file systems do not actually carry any
user data. 2A keyed-hash message authentication code.

www.manaraa.com

the client side and hence there is no loss of security. Anotherflat structure (i.e., object representation). The objects are
possibility is to use the last modified date of the object as theencrypted before being stored at the server. The benefit of
version number. Such a date could be stored in the object'ssuch an approach is that it hides the structure of the file
metadata. When access to the object is desired, the objectystem at the server. In [24], the authors have identified
can be retrieved from the server and the HMAC calculated the benefits of hiding the file structure from the untrusted
again locally. The client now has to confirm the version server.
number or the last modified date manually to determine if Notice that mere encryption of the objects does not
any tampering as taken place. For instance, if the client doescompletely hide the structure of the file system. When the
not agree with the last modified date/version that computesmetadata of the object is encrypted, the number of pointers
the HMAC the server returned, then the client can detectin the childreferences dictate the amount of the ciphertext
that a possible tampering has taken place at the server. Bubf the object. The size of the ciphertext leaks the structure
such an approach requires the user to validate every objecof the file structure, although not completely. The adversary
and hence makes the system unusable. can now determine the number of the children of a directory
Another method is to calculate thgdobal signatureof node from the ciphertext size, but he/she does not know
the complete file system using a Merkle tree approachwhere the actual child nodes are stored.
[?] and store the signature locally. Whenever access to To prevent even the partial structure leakage, all the
an object is made, the server sends a partial signaturedirectory objects need to be made of equal size. This is
over the remaining objects so that the client can use thedone as follows: DataGuard preordains a number called
partial signature and the object being accessed to generate IAX _CHILDREN. For directory nodes that have child
signature to compare to the most recent global signature thahodes less than MAXCHILDREN, DataGuard pads the
is stored locally. If the signatures match, then no tampering child_referencesttribute with placeholder pointers to make
has occurred. We did not adopt this solution because itsize equal to the size of MAXCHILDREN references. If a
requires server-side support, and violates our goal to usedirectory node contains more than MAGHILDREN child
existing data storage providers. Also, it requires a mobile nodes, DataGuard splits them into a set of directory objects
user to transfer the global signature between machinesgach containing MAXCHILDREN nodes. We will explain
thereby pushing data management tasks back to the usethe details of the process with an example: Let an object
something that we want to avoid. An open problem is O containn children, whereM AX CHIDREN < n <
to design data integrity techniques that allow the client 2xM AX _CHILDREN. Now DataGuard splits the object
application to detect data tampering attempts at the server(Q into two objectO; andO,. The id ofO; will be same as

without any user involvement. that of O. The id of objectD; is calculated as follows:
DataGuard leverages the ability to store data with mul-
tiple storage providers. For instance, if a user configures Os.id = hypy p(01.4d||Index)

DataGuard with at least two different storage providers SP1
and SP2, then DataGuard can store the version numbers of || represents the string concatenation symbahdex
the objects belonging to SP1 with SP2 and vice versa. If weis an integer whose value is incremented for each addi-
assume that SP1 and SP2 do not collude then the last updatgonal object that is created. In the above exampidex
problem can be solved. This assumption of non-colluding value is set to 1. The hashing is done to ensure that
servers has been made previously by the authors of [3] andDataGuard with the knowledge ab,.id can calculate
it is applicable to DataGuard since the storage providersO,.id. MAX_CHILDREN references/pointers of nodes
are in two different administrative domains to reduce the from then children of O are stored ir); and remaining
probability of an attack. n— MAX _ CHILDREN references are stored is’s
Completeness:In DataGuard, the completeness prop- Childgeferences attribute. TheO, Child_References is
erty needs to be verified when fetching all the child nodes padded with placeholder pointers to reflect the size of
of a directory. The information about the of number of MAX _CHILDREN pointers. The objecO; inherits the
children of a directory node is stored in the metadata of the metadata from the objedd and metadata of the object
object (in the childreferences attribute). This information O, is set to null®. The O; object’s metadata maintains
lets the client know precisely how many child objects an additionalobjectsattribute which tells DataGuard the

should be available from the server. number of additional objects its needs to fetch to complete
the directory object. We will refer t0,, the first object that
3.3 Hiding File Structure is fetched as thetarter objectand the rest of the objects as

theadditional objects

The file Sy'Stem'GDM mapping_ diSCUSS(?:'d previously 3, reality, the metadata of this object is also padded up with
translates a hierarchal representation of a file system to alaceholder bits to ensure equal size between the objects.

www.manaraa.com

Now when the server has to fetch obje@tfrom the to the user. Here, the object’'s metadata only is fetched.
server. It first fetches the starter objézt. Then it utilizes Read File (fileName): To read/open a file, the user
the value of the additionadbjects attribute to obtain the ids first navigates to the file and clicks it. The middleware
of the all the subsequent objects by hashing the idof then procures the object id and fetches its content from the
together with the index counter that is incremented for eachserver.
additional object. DataGuard now has enough information Write _File (fileName): When updating a file, the data
to recreate the objec? at the client side. Notice that that signature is calculated as described earlier and the object’s
the hash function is used to calculate the id of the additional content is encrypted using the OEK that is generated using
objects from the id of the starter object. To have a uniform the id of the node/file. The old object residing at the server
representation for object ids, the random number generateds deleted and the new version of the object calculated in the
for the starter object is also hashed. previous step is then stored at the server.

Our storage model prevents an adversary from deter- Move_File (fileName, destinationPath):Let us assume
mining the file structure from the ciphertext. However, a a file f is moved from directoryl; to d,. In DataGuard
sophisticated adversary can still infer the structure from thethe move operation is enforced by removing the pointer
access patterns. A solution to this problem will require to f from d; and adding the pointer to f id,. Even for
a solution similar in spirit to oblivious computin@,[?]. this operation, it is only required to fetch the metadata
Such a solution will be computationally very expensive of the objectsd; andd,. The ids of the objects are not
and impractical in the DataGuard scenario. We designedchanged during the move and hence they do not effect the
a solution that strikes a balance between security andcryptographic keys that secure the object.

performance. Move_Directory (directoryName, destinationPath):
This operation is similar to the MovEile operation
4 GDM Operations discussed above.

Delete File/Directory (file/directory _Name) : When

Thi ton d ibes the interface/functionalit deleting a file, its corresponding object is deleted from
id dlf) Stic |or_1dd|escr| eSTh € Itn (;r acer/unc ;or}?ly tpro- the server. When this is done, the parent object is also
vided by the middleware. 1he interface IS a Set o IUNclions ¢o-nay from the server and pointer deleted from the

that trilrlslate file s%stem .gperatmns to operations on thechild,references attribute.
serli/er_s ora;ge provi e_rds SIU;L q We have ignored the description of other operations such

ogin (storageprovi er , username, password, creating a directory, renaming a directory, etc, due to the
masterPassword) The middleware procures the URL of

the st ' d d of th lack of space. The previous descriptions of some of the
€ storage provider, username and password ot the usef)perations provide intuition for the other operations. For

to b.e able to access the service prowdepl by the Sto,rag%ore details regarding the client server interactions, please
provider. Once the user provides the right credentials, see the full version of the paper [6]

DataGuard fetches the root object from the server and
displays the object as a directory to the user. In DataGuard .
the id of the root object is equal oy »(1.0), where MP 5 Translational Layers
represents the masterpassword of the user. The user can

now perform any of the following standard file system
operations.

Create_File (fileName): A new object is created to

represent the file. The object id is randomly generated (se

section 3.1). Then, object’s metadata and the content ar Metadatawhich fetch v th tadata of the obrect
encrypted and the data signature is calculated as described’ etadatajwhich fetches only the metadata of the object.

earlier in section 3.1 and 3.2. The object is then stored at the he functiordelete(Object Odleletes an object stored at the

server using thetore(Object Ofjunction implemented in the Server. Fqnctlonsonnectandd|sconnec'open and close a
translation layer of the IDP. The directory object’s metadata session with the IDP.
under which the file is being created is also fetched. The public int connect(String username, String password)
childrenrefereneces attribute is then manipulated to store Pipie it Sovenod o)
the pointer to the newly created file. The parent object is publicint fetch(Object o)
then stored at the server. public int delete(Object o)

Open.Directory (directoryName): The middleware Figure 3. Translational layer functions
identifies the children of the directory node using the
child_references attribute. The objects are then fetched from The translation layer contains the server specific imple-
the server and presented in the form of directories and filesmentation that is required by the DataGuard middleware.

A TL layer contains the implementation of five functions
illustrated in fig 3. The functiorstore(Object O)stores
an object O at the server and the functifetch(Object O

e) retrieves the object from the server. In reality, the fetch
Junction is overloaded with another functi¢ietch(Object

www.manaraa.com

We will now proceed to define two layers supporting email 6 Keyword Search
and Amazon S3 storage service systems.

Email translation layer: An email translation layer is File systems allow users to search for documents that
useful because: a) Most users have access to web baseebntain a particular keyword. This section describes how
email services that are free; and b) These services currentyDataGuard handles such queries.
provide user’s a significant amount of storage space. Problem definition: A file f can be represented as a set
of words{W7, Wa, ... W, }. A keyword search query Q is
also a set of wordg Wy, Wi ...Wg}. Given a query Q
and a set of File§r = {F, F» ... F}}, our objective is to

Store(Object O:)An object O is mapped to two
email message&; and FE», where E; stores the object’s
metadataD.metadata and Es stores the object’s content € X . ,
O.Content. The metadata and the content are stored as'ind all files fromSy, wherevi, W € £, 1 <4 < m and
email attachments. The object’s id is stored in the subject1 <j<k .) .]
header of both the email messages. The email is created 1he Problem is relatively easy if the files #y- are not

at the server by generating the appropriate HTTP posTencrypted, which is not the case in DataGuard. There has
message that creates an email at the server. been previous work on executing keyword search queries

) . on encrypted data [7, 4]. Solutions previously proposed
_Fetch (Object O:) DataGuard fetches the required ;55med that the server is cooperative and runs a complaint
object by querying the email service provider's search ,roiqc0 to enable search on encrypted data. For instance,
mterfac«_a to find the appropriate emails. This is done by ;, [7], the client computes a trapdoor for a keyword and
generating the HTTP POST messages that forwards thesgngs the trapdoor to the server. The trapdoor does not
search query to the server. DataGuard needs to use thegyeq| any information about the original keyword. The

search interface to identify the re_quired emails, as it doeSgarer now by utilizing the trapdoor will perform a linear
not have control over how the emails are stored at the serverg.an of all the documents to test for ciphertext blocks that

Typically, emails are given a server side id. This id is used -ntains the required word. Similarly, in [4], the server

to fetch emails fr_om the server. DataGuard has no controlcomputes multiple hashes of the trapdoor to compute an
over the generation of such an id. It needs to use the searchy,jeoy that it can then subsequently use to find the required
interface to procure the_ id and then use it to fetch th_e email. yocuments. Clearly, such approaches cannot be applied in
Such downloaded emails are then mapped to an object formp 3 Guard context, since the server cannot be dictated to

We have described the details of the two of the most perform computations that it is does not perform already.
important TL functions. In the interest of space, we will Inthe DataGuard architecture, we made an assumption that
not describe the other functions in this paper. We hope theservers can only store and fetch objects and nothing else.
above discussion provides the user with enough intuition for The server is not expected to perform any further operations
other functions. on the objects.

Amazon S3 translation layer: Amazon S3 service also We will now present a novel cryptographic index

in Cryptind that allows DataGuard to search for files which

follows an object based model for data representation. . X .
Amazon S3 service, data is modeled as a set of bucketsCoNtain the required keyword<ryptind consists of a set

Each bucket contains a set of objects. A bucket cannot_mc index_entries{]l,b, .- In}. An index entry contai_ns
contain further buckets inside them. The TL layer for information about the documents that contain a particular
Amazon S3 service maps DataGuard objects to AmazonK€YWord. . _ .
objects and vice versa. BuildIndex: An index entry I, is a pair
) _)) H;,Enp(B;) >. H, represents the hash of a
Store (Object O) An Amazon object consists of the yevword/iword andB; represents a an arrays of bits. We

following primary attributes{ Key, DataString}*. The il refer to H; as thekeyword hastand B; as thebitmap
DataGuard object's metadata and content are stored ingf the index entryl;. Let S; be the set of files being

the Amazon o'bjec't’s DataString attribute.. The id of the gexed. Every filef € S; is given adocument id This
DataGuard object is stored in the Key attribute. An HTTP 4 iq gifferent from the object id we discussed in section 2.

POST message is generated that creates the required objeghe generation of the document ids is done as follows: At
atthe server. the beginning of Buildindex, a counter is set to zero. For
Fetch (Object O:) The TL layer will fetch the Amazon every document being indexed, the counter is incremented
object withKeyequal to O.id. This is achieved by creating and its value is stored along with the file/object as the
the appropriate HTTP POST message as well. document id.
Let Ky represent the set of unique keywords that are
present in all the file irbr. For every keywords; € Ky,
“We have ignored other attributes in the interest in brevity an index entryl;, =< H;, Ey,(B;) > is created. The

www.manaraa.com

hash of the keyword;,p(k;) is stored inH;, where the choose to fetch the required file from the server by clicking
masterpassword (MP) is used as the key. on it and invoking theReadFile function.

B; is an array of2 x Ny bits, whereN, refers to the Updating the index: For every file f that is updated,
number of documents initially being indexed. The size of Cryptind needs to be changed at the server. Let us assume
B; needs to at leasy, bits due to the following: Leff.id that a file f is updated to its new stae, DataGuard
represent the document id of a fife For every filef € Sg, calculates the differences betwegnand f'. Let Wedd
the f.id th bit of B; is set to 1, ifK; € f. We use the bits represent that new words that are added jhtand leti/ <!
to keep track of the documents that contain the keyword. represent the deleted words frofn Note, care should be
Cryptind contains additional bits for documents that can be taken to make sure that all the wordgiff*! are not present
created in the future. Therefore, the sizelXfis increased in f elsewhere. All the index entries who keyword hashes
to 2% N, to allow some slack for futures updates. When the correspond to hash of words in the $&t244 U W'} are
number of documents exced N,;°, there are two options: fetched from the server. The index entries are updated to
a) build the index again with larger array size; or b) Split reflect the changes done to the fjfle For all the words in
the index entry into two. The id of the second index entry is W9, the f.id th bit of corresponding index entry is set to
derived by hashing the id of the first entry. A flag bitis setat 0. Similarly, for all the words i ?4 the f.id th bit of
the end of the first index entry which specifies to DataGuard corresponding index entry is set to 1.
that an extra index entry needs to be fetched. Building an Security Analysis: In [4], the authors propose a security
index can take significant amount of time and hence the model for cryptographic indexes. We will use the security
latter approach is preferred. Splitting an index entry has onemodel to show that Cryptind is secure. The intuition behind
disadvantage: When access to a index entry which has beethe security model is as follows: A cryptographic index
splitis desired, it takes two rounds to fetch both the requiredis secure, if it does not reveal any information about the
entries from the server. In DataGuard, after a significant plaintext/original data More formally, the cryptographic
number of index entries have been split, the index is re- indexes need to beemantically secureSemantic security
built at the client. The bitmap; is then encrypted by using is a strong notion of security, which can be summarized in
the masterpassword as the key to genefatg, (B;) . The the context of a cryptographic index as follows:
index entries created in this fashion are then stored at the Semantic security for indexes: Let I; and I; be two
server, index entries of an cryptographic Ind&x corresponding

Storing the index: Each index entryl; is stored as to two different keywordsK; and K, respectively. An
an objectO; at the server. The keyword hash of index adversaryA is provided with{K;, K>} and{I;,I>}. A
entry i.e.,I;.H;, is stored as the object's nanig.name. does not know the relationship between keywords and the
nameis an attribute that is stored in the object's metadata. index entries.A will try and guess the relationship between
The encrypted bitmap of the index entry, i.8.Ey pB; is them. LetPr[I; — K] be the probability thatl correctly
stored as the object’s contefit.content. The metadata of guesses thal, is the index entry for keyword(;. Note, if
the objectO;.metadata containsindex = true attribute- A can correctly decide the relationship betwdemand K1,
value pair. This will allow DataGuard to identify the object then automaticallyd can deduce the fact that is the index
as an index entry. The index objects are given automaticallyentry for K. For the indexZ to be semantically secure, the

generated ids. following inequality should hold:
Searching the index:Let Q ={W{, Wi ... W4} be a
ST . P 1
qguery which is a set of unique keywords. The objective is Pr(l; — K1 < (= +¢)
-2

find all the documents that contain all the words in Q. For
every wordW;! € @, its hashh,, p(W}) is calculated and ~ wheree is a negligible real number.
corresponding index entry is retrieved from the server. Let

the setl? = {I,,I,,...1,,} represent all the index entries Claim 6.1 Cryptind is semantically secure
retrieved from the server in response to the query Q. All the
bitmaps of the index entries iff are decrypted. Lef.B;
represent the plaintext/decrypted Bitmap of index entry I.
Then, a conjunction of ANDs of all the Bitmaps iH, i.e.
A;?;II]-.Bi, is calculated./\Tzlfj.Bi contains information
about the documents that satisfy the query. All the files
metadata whose ids are equal to the position of the set bits i
AL 1;.B; are fetched from the server. These files contain
all the keywords present in the query. The user can now

Proof Sketch: Consider an Adversary with knowledge of

two index entrie§ I, I} and the correspondingK, K }.
Without loss of generality, let us assume that A is trying
to guess the index entry &f,. Let[;.H; and I,.H, be

the keyword hashesf index entries/; and I,. Both the
A(eyword hashes are of equal length. Recall that a secure
cryptographic hash function is used in calculating the
keyword hashes of the index entries. Therefore, since secure
cryptographic hash functions aemantically securehe
SNotice that we are not limited to the scaling factor of two. adversary by looking at the keyword hashes of the index

www.manaraa.com

entries alone, will not be able to predict accurately the index Similar to cryptind, for every unique keyword, a keyword
entry of keyword’;. Now consider the encrypted bitmaps entry is created.
of the index entries. Standard encryptions functions are also g-gram index entries: A g-gram entry is a tuple<
semantically secure, the bitmaps also will not reveal any H!, B} >. H{ represents a keyed hash output of a g-gram
information. Both the keyword hashes and the bitmaps of ¢; that is a substring to at least one keyword stored in the file
the index entries do not reveal any information fdr A system. B! is a set of pointers which point to a keyword
can now only guess randomly to find the correct index entry index entry. B! contains the ids of the keywords which
for keywordk; and will succeed with a probability . contain the substring;. We will refer to B} of a g-gram
entry as itspointer set Care is taken so that the pointer

In the current version, CryptIDd canfot handle pattern gets of all the g-grams are of equal cardinality. A procedure
based keyword queries, such as *Secur*, which are allowedgjmilar to the one that maintains equal size of bitmaps is

by the modern file systems. The next section describes howysq followed here. As we will show later, this is done to
Cryptind can be extended to handle pattern queries. We will g5 ,re securityB? is encrypted before being stored at the

refer to the extended index as the Cryptind++. server.
. Storing the index: Similar to Cryptind, both the key-
6.1 Support for pattern queries word and g-gram index entries are mapped to objects and
o) then stored at the server.
Definition g-gram: Let s be a string of length. A g-gram Search: Let Q* = {Q¥,Q%,Q"} be a query which a
of a strings, is a substring of of lengthg, whereg < . set of patterns. The objective is find all the documents that

contain the words that match all the patterng)in

For every patternQ; € QP, let Q}, represent the
set of g-grams in th&)]. For every g-gram inQ7 its
hash hk(qu) is calculated using the masterpassword as

Overview of approach: g-grams are essential in un- the key and corresponding g-gram index entry is retrieved
derstanding our technique to support pattern queries. from the server. Let the sdi) — {IQ1, 10, ... 1Qm}

is a variable parameter that the user can change, which . : .
determines the number of g-grams per string. Cryptind++ represent all the index entries retrieved from the server
. Lo S . _in response to the query?. All the bitmaps of the
indexes such g-grams. Cryptind++ maintains index entrlesinol « entries inZO are decrvoted. Lef B. represent
that contain information about keywords which have a g- €x entres Q are jecrypted. Lell.b; represe
gram in common. Given a pattern quey, Cryptind-++ the pointer setof g-gram index entry I. Then, a union of
4 ' ' all the Bitmaps in/Q, i.e. U™ ,1Q;.B;, is calculated.
first calculates all the g-grams i,. For all such g-grams, U™ 1O, B: contains 'nformatj'arll abjo ¢ the kevwords that
Cryptind++ fetches the keywords that contain at least one ~J @Q;.B; ns | : u yw

j=1
of the required g-grams. The keywords fetched are thenC?,leld potentlarllly satisfy the dquergl’. For devery pomter n d
checked locally at the trusted client side if they match the #(J)?nlltﬁé .fé’r\te(ra cirer;(sg[;) nre;n?esiivtv?;e esr:{yo'fsggtcve(;/r%
pattemn?. Let &, be the set of keywords that match the entries retrieved from theI se?ver Now DataGuardychecks
pattern. For all the keywords iif,, similar to the technique for the k ds iNKW, that ' ich atleast £ th
illustrated in Cryptind, the document ids that contain the or the keywords in ¢ that maich atieast one ot the

keywords are retrieved from the server and subsequentlypatterns InQ”. This is achieved by decrypting the encrypted

the required documents. We will now explain all the above teyxo:g pi?]r[t(%]; ITE 'tng]eﬁ (re]ntrlesr |KI:ler. Ficr)rr]"alrl ttheth
steps in greater detail. eyworas 1 that match, a procedure simiiar to the

Buildindex(Cryptind++): Cryptind++ contains two search in cryptind is followed to retrieve the metadata of

types of index entries: a) Keyword index entries: b) g-gram the files that contain the requ_lred patterns. The_user can
index entries. now choose to download any files that he/she desires.

Keyword index entriesKeyword index(Kl) entries are Uﬁda_te;': The procedurel tg ulgdates dies nog ghgnge
similar to the Cryptind index entries. Kl entries are triples much with respect to cryptind. I a new keyword index

< id, Hy, Bs, Exrp(KW;) >. H; and B, have the same entry needs to be added, then new g-grams entries also

value/semantics as their namesakes in Cryptind entiiks. might need to _be added, since the _requwed g-grams may
refers to keyword entry id that is assigned to every keyword not be present in the current g-gram index entry set.

entry. At the beginning of Buildindex, a counter is set

to zero. For every keyword being indexed, the counter 6-2 The value of q

is incremented and its value is stored as the id for the

keyword entry.Ey, p(KW;) represents the actual keyword For a string S of length, there afe — ¢ + 1) g-grams.
encrypted using masterpassword as the key. We will refer toThe proof is by mathematical induction. In the worst case,
it as theencrypted keyworgart of the keyword index entry. the number of g-grams will far outnumber the keywords.

Consider the stringsecure Substringsse and re are
examples of 2-grams ofecure Likewise, substringsec
andcur are examples of 3-grams.

www.manaraa.com

In Cryptind++, we only index unigue g-grams. In practice, are fetched from the server. Léfs represent the set of
they tend to be less than the keywords indexed (for q =3). keyword entries that are fetched from the server. Now,
Increasing the value aof potentially decreases the number there are three kinds of false positives that are possible in
of g-grams that need to be indexed. On the other hand, itCryptind++: a) The false positive pointers/references to
reduces the flexibility in generating the pattern queries to keywords ing!; b) Keywords inK s that do not match the

the user. In DataGuard, the value of g is set to 3. pattern/s in Q even though they contain all the g-grams in
qs; ¢) Keywords inK g that do not contain all the g-gram in
6.3 Analysis qs-
Case a: A g-gram entry ing! could contain refer-
6.3.1 Security Analysis ences/pointers to keywords that do not satisfy all the g-
grams ing;. We will now try and quantify suck keyword
Claim 6.2 Cryptind++ is semantically secure. pointers. Letig!| = k. Then, the number of false positive

. . pointers are equal to:
Proof Sketch: Cryptind++ contains two different types of

entries. We now need to prove that both types of entriesKW (q;) + KW (q2) + ... KW (qx) — KW (g1 Ng2 N ... qx)
are semantically secure. From claim 6.1 it should be clear
that keyword entries are semantically secure. The g-grams Where functionK'WW (¢;) represents the cardinality of
entries are also semantically secure, since given two g-the pointer set belonging to the g-gram index entry that
gram entries, the attacker cannot difference between therepresents the g-gram. Similarly, KW (g1 Ng2 N ... qx)
two. Like the keyword entries, g-grams also employ a hashrepresents the keywords references/pointers that are found
function and an encryption function internally, which are in all the g-gram entries in,. In this case, there is a
semantically secure. potential for a large number of false positives. The false
positives monotonically increase with the increase in g-
Song et.al. [7] describe three essential properties for agrams in the pattern query.
cryptographic search technique. We will now informally Case b: It is very difficult to quantity the number of
show that Cryptind++ satisfies all the three properties. keywords inK g that do not match the pattern/s in Q, since
Hidden Queries: This property states that server should it largely depends on the dataset. We will first quantity
not know the keyword being queried. In our scheme, the the expected number of keywords in a dataset that contains
actual keyword is never revealed, only its hash value is sentall the g-grams ing;. Then, we will show that such a
to the server. number decreases exponentially with increase in g-grams.
Controlled Searching: This property states that the This result provides the intuition that while it is possible
server should not be able to generate trapdoors for any giverthat a significant number of false positives are fetched from
keyword. In our scheme, the hash value of the keyword the server when the number of g-grams;inare low, in a
that is sent to the server is the trapdoor. Since we usefairly typical case the false positives are not that significant.
a masterpassword during the hashing process, the server Let |g;| = n. Also, let P; be the the probability that a
cannot compute trapdoors locally. g-gramg; appears in a keyword w.r.t to the dataset that is
Query lIsolation: This property states that the server beingindexed. Then, the probability that all the g-grams in
should learn nothing about the documents other than theg, appearin a keyword ig["_; P;. Let N}, be the number of
search results. This follows directly from the Cryptind++ the unique keywords in the dataset. Therefore, the expected
semantic security result that we proved previously. The number of keywords that contain all the g-gramsginis
index does not reveal any information at the server side. equal toN, x []"_, P;.
In the worst case, all thé/, x []_, P, keywords can
be considered as false positives, i.e, they do not satisfy the
pattern in Q. Since probability that a g-gram is present in
In our search technique, to answer a keyword query, somea keyword is inversely proportional to the number of the
extra information is fetched from the server. This sec- keywords, the quantityv, x []:_, P, decreases exponen-
tion quantifies the extra information/false positives fetched. tially with increase in number of g-grams presentgin
Note that such false positive information is filtered at the Therefore, false positives decrease exponentially with the
client side. In Cryptind++, given a pattern query Q, we first increase in the g-grams in the pattern Q.
extract all the g-grams in Q. Let represent the set of such Case c: Keywords in Kg do not necessarily have to
g-grams. Then, g-gram entries that represent the g-grams irtontain all the g-grams ig,. Since hash collisions are
qs are fetched. Let! represent such g-gram entries. possible, two or more g-grams can map to the same hash
Then, an intersection of all the keywords that are indexed value. Therefore, keywords ifKs can contain other g-
in ¢, is calculated and there corresponding keyword entriesgrams which map to the same hash value to that of g-grams

T
i

6.3.2 False positive analysis

10

www.manaraa.com

in qs. times for all the three layers when the files were accessed
We will now analyze the probability that there exists a from a laptop.
keyword in K that does not contain all the g-gramsgin Not surprisingly, transfer times increase linearly with
Let N, be the number unique g-grams in file system/dataset.the file size. Since the DB layer was using a database
AlSO, let Sh be the size of the hash function output in bits. that was geographica"y very close to the |aptop, we are
Then, getting excellent file transfer rates. The transfer times for
the Gmail layer were slower than that of the Amazon layer.
One interesting thing to note was, for the Gmail layer, the
i download times were slightly slower than the upload times.
prig-gram ¢ does not collider- 4= The reason is the following: For storing/fetching files, the
pr[No collision for all the g-grams ias]:(p%)m\ translational layer needs to send HTTP requests to the web
based email provider. While, one HTTP request is sufficient
for storing a file, it required 3 HTTP requests for fetching
a file. First we had to use the search interface given by the
,, skt email service provider to locate the email with the required
object and then fetch it.

Our second experiment was to measure the crypto-
In DataGuard we use the SHA512 cryptographic hash graphic costs of DataGuard. Figure 6 reports the different

pria given ggram g collides-"—2

prifalse positive=1—pr[No collision for all the g-grams ig.]

—1—(1—Na=1ylqs|
=1-0 2571)

algorithm which outputs a 512 bit long string. Herfgie = cryptographic costs in DataGuard . The encryption times
512. For any reasonable value B, andg;, the probability ~ were very similar to the decryption times and they exhibit
of a false positive is nearly equal to zero. a very linear behavior. The integrity costs were lower

In summary, Cryptind++ is a semantically secure cryp- than the encryption costs. The interesting things about
tographic index that allows the DataGuard middleware to this experiment was that fact the when compared to the
search for keywords on encrypted data. The novelty of network costs, theryptographic costgale in compari-
Cryptind++ lies in the fact that no changes are necessaryson. Therefore, the security itself is not degrading the
at the server side and it supports pattern queries, unlike theperformance of DataGuard by much. To confirm this

previous approaches. intuition we conducted another experiment to measure the
overhead for using DataGuard. We used cockpit, a tool that
7 Experiments allows users to upload files to their Amazon S3 account.

We measured the time taken to perform some standard

The goa| of our experiments was to measure the per-ﬁle System Operations via COCkpit and DataGuard. F|g 7
formance of our system. DataGaurd's scalability is not reports the relative times. Not surprisingly, with DataGuard
much of an issue, since Sca|abi|ity depends on the Sys_takes |0ngel’ than COCkpit to execute the Operations, but the
tems maintained by the Internet storage providers. Moredifference is negligible. This implies there /o major
concretely, we wanted to measure the performance of ourPerformance degradation due to DataGuard
middleware in enforcing data confidentiality constraints Our final experiment was to measure the performance of
by encrypting/decrypting data objects, calculating data in- Cryptind++ cryptographic index. We ran different pattern
tegrity information, and the network costs associated to it's search queries and measured the time taken to answer the
usage. gueries across all the three layers. Fig 8 reports the relative

Experimental Setup: Our experiments were conducted index search times for the three layers. Index search is very
on the three layers that we mentioned before. The DB layerfastin DataGuard. The DB2 layer has the best performance,
utilizes a IBM DB2 database as the storage server. Thisdue to its close proximity to the client machine. In the
database was running on an 8 processor pentium machindmazon layer, most search queries can be answered close
with 32 GB Ram in our laboratory. The Gmail layer was 2 secs. The Gmail layer is the slowest of all the three
written for a major commercially available web based email layers. The reason is the following: The Gmail service
provider (Gmail web service). For the experimental data, temporarily disbands an account if a lot of emails are sent
we used a local file system of one of the authors. The file to the server with a small time period. Due to this reason,
system was outsourced via the DataGuard middleware towe were forced to store a large number of index entries
both the storage servers. We accessed the data via a laptop one email. Ideally, we would have stored one index
machine containing an Intel Celeron(R) 1.80 Ghz processorentry in an email. Due to this restrictions, a significant
with 786 MB of RAM. amount of the Cryptind index needs to be fetched from

Results: Our first experiments were to measure the net- the server to answer the query. Hence, the degradation in
work costs. Figures 4 and 5 report the file transfer/download performance when it comes to Gmail. There are no such

11

www.manaraa.com

Time (ms)

Time (ms)

o khLLLLGRD

900 2048 409 6 900 2048
File Size (KB) File Size (KB)

409

ame s me

200 2 aos e me 100
File Size (KB)

Figure 4. Network costs, Figure 5. Network costs, Figure 6. Cryptographic
transferring files downloading files costs

-0 s s

Time (ms)

2000

. ﬂ m m L, "
Create File Open File Make Directory Cut&Paste N N M 0 15 2 P 0 a0 100 00 1000
File System Operation Number of q_grams Number of Keywords
Figure 7. Overhead of Figure 8. Cryptind++ Figure 9. Cryptind++ Up-
DataGuard Search dates

issues with Amazon service and hence there is a noticeabldd Related and Future work
improvements in the performance.

8.1 Related Work

In the next experiment, we wanted to measure the cost
of updating the index. A similar trend also exists in Index
Updates. Fig 9 shows the results. The Gmail layer is much
slower than the Amazon layer. To update 1000 keyword
entries, it takes 1.4 secs in Amazon and 79 secs in Gmail.
Since with some IDPs, the updates could be slow, there is
a requirement to explore smart update algorithms that bulk

update the index. This way, the client does not have to Waith Cc;yptographicl filedsystems [2’k15C’: 13, 14] oﬂ. thf(?l other
for a significant amount of time every time he updates a and are very related to our work. Cryptographic file sys-

file. Although, this process generally can be in background, tems dp not trust the end storage apd aII. the cryptographl'c

when the client machine is idle. operations are done at the trusted/client side. Cryptographic
file systems such as Sirius [13] and Plutus [14] also allow
sharing of files between users, where access to files is

Another interesting experiment was to measure the q_provided via key distribution. DataGuard currently does
grams/keywords ratio. Fig 10 illustrates the results. The not deal with sharing, although it is one of our future
number of g-grams indexed decrease as the keywords ingoals. We differ from the cryptographic file systems in
dexed increased. This is due to the fact that as keywordsthe following manner: a) cryptographic file systems do not

increase they tend have more and more g-grams in Common_adopt to the heterogeneity of data models of the server side.
Typically, they assume a file system based model at the

server. DataGuard on the other hand can easily adapt to
Under Construction the heterogenous data models at the server.

Network file systems [18, 19, 20] allow users to out-
source their information to a remote server. An authorized
client can then mount the file system stored at the server.
Typically in these systems, the server is trusted and is in
charge of authentication of the users and enforcing access
control on data. This is not the case in DataGuard.

12

www.manaraa.com

Qgrams / Keywords.

4000 6000 5
Number of Keywords Number of Keywords

Figure 10. Q- Figure 11. False positives
gram/Keyword ratio in g-gram index entries

DAS [11, 12] architectures allow clients to outsource Disk can only function with the Amazon S3 service. Jungle
structured databases to a service provider. The serviceDisk also provides a file system like interface to the user
provider now provides data management tasks to the clientand preserves data confidentiality of the user by encrypting
The work on DAS architecures mainly concentrated on exe-the data stored remotely. The user can provide a password
cuting SQL queries over encrypted data. The clients of DAS as the key to encrypt the data. To the best of our knowledge,
architectures are mainly organizations that require databasdungle Disk does not verify the integrity of the data.
support. Both the DAS architectures and DataGuard can
be thought of as instantiations of the outsourced databasg 2 Future Work /Open Problems
model (ODB). The key differences are: a) The data
outsourced in DAS is highly structured. In DataGuard, the
data oursourced is semi-structured. b) DAS architectures
did not deal with mobility issues, which is one of the . .

main focus for our future work in DataGuard.

rimary goals of DataGuard. . : :
P . y.g . . . Accessing Information from Untrusted Machines:
Distributed file systems like oceanstore [10] provide a pacq)) that we have initially made an assumption that all

storage infrastructure for the users to store data on theg gevices the user access his/her data are trusted. While

network rather than at a centralized server. In ocenstore, thqn most cases this is true. in some cases it isn’t. Eor instance
files are treated as objects and are replicated across m“mpl%onsider Alice who is traveling without a laptop. She needs

locations. The goal is to ensure availability, scalability to access her data from a publicly accessible machines
and fault tolerance. DataGuard should not be treated as & ch the ones that are avaialble in cybercafe or a public

distributed file system, since middleware treats the storage,,,chine. Such public machines can harbor macicious
providers as a single logical entity. This does notimply that o +ties which could steal Alice’s masterpassword. A
the service providers do not implement a distributed storage

) simple keystroke logger will accomplish the job. Clearly,
infrastructure. On the other hand, DataGuard does aHOWthis is undesirable. We need techniques to to access

users to mount different file systems with multiple storage personal data from untrusted data. In [1] the authors

providers. propose a proxy based solution to access websites securely

In DataVvault [21], the authors proposed a client-server from untrusted machines. We envision a similar solution
architecture which allows users to outsource their file sys- could solve the above problems.

tems to an untrusted server. The server then pI’OVideS data Sharing of Documents: In this paper, we On|y con-

services on top of outsourced data. DataGuard is not asigered the problem of accessing data remotely. When it
client-server arChiteCtUre, it is a middleware that is trylng comes to persona| information another requirement is the
to utilize the storage space provided by untrusted servers ompjlity to share it. Currently, users use a variety of ways
the Internet. In DataVault, the authors were able to dESign ato share data: a) via ema”; b) running pub“c servers, etc.
server architecture from scratch that suits their data storagepataGuard middleware could potentially could be extended
requirements. DataGuard middleware on the other hand hasg allow data sharing as well. This raises many challenges
to work/adapt to the current data storage infrastructures Ofinteresting challenges, since to enable data sharing the
the IDPs. untrusted servers should authenticate users and distribute

Jungle disk softwaré] layers a security mechanism over data. This needs to be done in a fashion where the server
the Amazon S3 storage service. Unlike DataGuard, Jungledoes not learn any user’s data.

In this section we will describe some of the open prob-
lems in DataGuard. The following problems will be the

13

www.manaraa.com

Building applications on DataGuard’s framework: In

the current avatar, DataGuard allows users to outsource
their file system. There are many data services that can

be built on top of such framework. For instance, consider

autofill information of browsers.

Such information is

typically maintained as a file in the local hard drive. If

the user allows DataGuard to outsource such files, then

DataGuard can fetch the autofill information and install it at
the appropriate place without bothering the user. Thereby,

the user can now have his passwords, usernames, etc.
automatically filled out wherever he/she goes.

We will

exploring such applications in the context of DataGuard.

9 Conclusions

In this paper we presented DataGuard, a middleware that
allows users seamless access to their data from heteroge-
nous data storage providers on the Internet.

ensures the confidentiality and integrity of the user’s data.
DataGuard utilizes a novel index based approach to allow

keyword based search on encrypted data. Our main goal
is to release the DataGuard middleware as an open source

software that will allow experts or webmaster to write
translation layers compatible with DataGuard. This will
allow storage providers to provide data services on top
on DataGuard. We have currently developed a prototype,
which we intent to thoroughly test before releasing it to the
public. A beta version of the DataGuard software can be
downloaded at http://DataGaurd.ics.uci.edu.

References

(1]

(2]

Ravi Chandra Jammalamadaka; Timothy van der
Horst; Sharad Mehrotra; Kent Seamons; Nalini
Venkatasuramanian. Delegate: A Proxy Based
Architecture for Secure Website Access from an
Untrusted Machine. 22nd Annual Computer Security
Applications Conference (ACSAC), Maimi, FL,
December, 2006

M.Blaze. A cryptographic file system for UNIX. Pro-
ceedings of the 1st ACM conference on Computer
and communications security.

[3] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-

(4]

Molina, K. Kenthapadi, R. Motwani, U. Srivastava.
D.Thomas, Y.Xu. Two Can Keep a Secret: A Distrib-
uted Architecture for Secure Database Services.2nd
Biennial Conference on Innovative Data Systems
Research, CIDR 2005.

Eu jin Goh. Secure Indexes. In submission

14

DataGuard

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

RSA Laboraties. PKCS #5
Password Based Cryptography
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-
5v2/pkcs5v2l.pdf

V2.1:
Standard.

Ravi Chandra Jammalamadaka, Roberto Gamboni,
Sharad Mehrotra, Kent Seamons, Nalini Venkata-
subramanian. DataGuard: A Middleware Layer
Providing Seamless Mobile Access to Personal Data
via Untrusted Servers. Techincal Report

D. Song, D.Wagner, and A. Perrig. Practical
Techniques for Searches on Encrypted Data. In
2000 IEEE Symposium on Research in Security and
Privacy.

Briney, Andrew. 2002. The 2001
Information Security Industry Survey
2001 [cited October 20 2002].

http://www.infosecuritymag.com/archives2001.shtml

Dhillon, Gurpreet, and Steve Moores. 2001. Com-
puter crimes: theorizing about the enemy within.
Computers & Security 20 (8):715-723.

S.Rhea, P.Easton, D.Geels, H.Weatherspoon.,
B.Zhao, and J.Kubiatowicz. Pond: The oceanstore
prototype. In the proceedings of the Usenix File and
Storage Technologies Conference(FAST) 2003.

Hakan Hacigumus, Bala lyer, Chen Li, and Sharad
Mehrotra. Executing SQL over Encrypted Data in
the Database-Service-Provider Mod2D02 ACM
SIGMOD Conference on Management of Data, Jun,
2002.

E.Damiani, S. De Capitani Vimercati, S.Jajodia,

S. Paraboschi, P.Samarati. Balancing confidentiality
and efficiency in untrusted relational DBMSs. Pro-

ceedings of the 10th ACM conference on Computer
and communications security.

E. Goh, H. Shacham, N. Modadugu, and D. Boneh,
"SiRIUS: Securing remote untrusted storage,” in
Proc. Network and Distributed Systems Security
(NDSS) Symposium 2003.

M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu, "Plutus: Scalable secure file sharing on
untrusted storage,” in Proc. 2nd USENIX Conference
on File and Storage Technologies (FAST), 2003.

E.Zadok, |.Badulescu, and A.Shender. Cryptfs: A
Stackable vnode level encryption file system. Tech-
nical Report CUCS-021-98, Columbia University,
1998.

www.manaraa.com

[16] G.Miklau, D.Suciu, Controlling Access to Published
Data Using Cryptography. VLDB 2003: 898-909

[17] E.Bertino, B.Carminati, E.Ferrari, B.Thuraisingham
and A.Gupta. Selective and authentic third party
distribution of XML documents.

[18] S.Shepler, B.Callaghan, D.Robinson, R.Thurlow,
C.Beame, M. Eisler, and D. Noveck. NFS version 4
protocol. RFC 3530, April 2003.

[19] J.Howard. An overview of the andrew file system.
In proceedings of ACM symposium on parallel
algorithms and architectures. SPAA, 2002.

[20] David Mazires. Self-certifying file system. Phd
Thesis. 2000

[21] R.Jammalamdaka,S.Mehrotra, K.Seamons,
N.Venkatasubramanian. Providing Data Sharing
as a Service. Technical Report.

[22] http://www.aws.amazon.com/s3
[23] http://www.apple.com/dotmac/

[24] Ravi Chandra Jammalamadaka, Roberto Gamboni,
Sharad Mehrotra, Kent Seamons, Nalini Venkata-
subramanian. gVault. A Gmail Based Cryptographic
Network File System. To appear in the proceedings
of 21st Annual IFIP WG 11.3 Working Conference
on Data and Applications.

10 Appendix

15

www.manaraa.com

@ dataGuard

b Cdbn o inin: Sl

| File FileSystem View Tools 7

I

| pete |

L = Eori
i Go. I Show Filker

|
Search|

B localDisk(C) v C\CodelTava Search | (8o]
Name Size Date Modifiad DataGuard Service (X] | Amazons3 [5t] gVault [|Bsz |
| | ! 1
" =8 up dir 05212007 File Name | File Size | Last Modified J
i '}l Amazan33 API dir 05/22¢2007] documents 0 12/31/1969
l H FileExplaorer dir 0417 F2007 1] 12}'3”1*9
'. ﬁ :::I:ilehﬂanag!r ::: g:ﬁ:zsg: 3 12\]'31!1969
I _H GmailLayer dir 0417 F2007 12}‘3”1*9
i GoogleCalendar... dir 0<18f2007 A :
86724
._H IntegrityChe cker dir 0441712007 = "
M) wise code dir 04416/2007 Appunti.doc 57856
(J Mobilestructure dir 0411702007 CorbaSpecifications. pdf 10055046
0511442007 X RelazioneServiziketifdHoc.pdf 411441
I _H Thesis Applicatian dir 0441752007 E Mmalp& 380103
,H TrajectoryAnonyi... dir 0<18f2007 e
" : commons-codec-1.3.jar 46725
1 _H Tr!!ﬁznzllstnr d!r 04172007 it zl (.}ﬂ' 1145514
._H YahooMailAPI dir 0541442007 e = Share
L dvau dir 0441742007 5] idom.jar 145541
L gvault dir 0411712007 Revoke
Wl gvauitio dir 05/14/2007 Transfer
l‘H iPAQEncryptor dir 0417 F2007 T o Filae
|| iPacintegrityohe... dir 0441742007 | Refresh Shared Files
L iPADSnapshat dir 044172007
| ;
) iPAGIayer dir 04/18/2007
' ,u iPagMuobileStruct... dir 0418f2007
b| File Name | Status Frogress Direction | Destination |
HIE: commons-codec-1.3 jar Finished WENNNNNN |-> rootl |
| [E] db2jec.jar Finished AN [root] ||
2] jdom. jar Finished ITTITTR B root} |

(oo) noFles incuens

authors UCT

Figure 12. Snapshot of the DataGuard application/middleware. The interface is similar to the one
provided by the modern operating systems. DataGuard is implemented in Java.

Ol LAC U Zyl_i.lbl

16

www.manaraa.com

